Halyna Yarmola

Посада: Доцент, Computational Mathematics Department

Науковий ступінь: кандидат фізико-математичних наук

Вчене звання: доцент

Телефон (робочий): (032) 239-43-91

Електронна пошта: halyna.yarmola@lnu.edu.ua

Профіль у Google Scholar: scholar.google.com.ua

Наукові інтереси

Numerical methods for solving nonlinear operator equations.

Курси

Вибрані публікації

  1. Argyros I.K. Extended convergence analysis of Newton-Potra solver for equations / I.K. Argyros, S.M. Shakhno, Yu.V. Shunkin, H.P. Yarmola // Journal of Numerical Analysis and Approximation Theory. – 2021. – Vol. 49, No. 2. – P. 100-112.
  2. Argyros I.K. Semilocal convergence of a Newton-Secant solver for equations with a decomposition of operator / I.K. Argyros, S.M. Shakhno, H.P. Yarmola // Journal of Computational Analysis and Applications. – 2021. – Vol. 29, No. 2. – P. 279-289.
  3. Argyros I.K. On methods with successive approximation of the inverse operator for nonlinear equations with decomposition of the operator/ I.K. Argyros, S.M. Shakhno, H.P. Yarmola // Вісник Львівського університету. Серія прикладна математика та інформатика. – 2020. – Випуск 28. – C. 3-14.
  4. Argyros I.K. Method of Third-Order Convergence with Approximation of Inverse Operator for Large Scale Systems / I.K. Argyros, S.M. Shakhno, H.P. Yarmola // Symmetry. – 2020. – 12(6), 978.
  5. Argyros I.K. Extending the Convergence Domain of Methods of Linear Interpolation for the Solution of Nonlinear Equations / I.K. Argyros, S.M. Shakhno, H.P. Yarmola // Symmetry. – 2020. – 12(7), 1093. 
  6. Argyros I. K. On an improved convergence analysis of a two-step Gauss-Newton type method under generalized Lipschitz conditions / I.K. Argyros, R.P. Iakymchuk, S.M. Shakhno, H.P. Yarmola // Carpathian Journal of Mathematics. – 2020. – Vol. 36 , No. 3. – P. 365-372.
  7. Argyros I.K. Improving Convergence Analysis of the Newton–Kurchatov Method under Weak Conditions / I.K. Argyros, S.M. Shakhno, H.P. Yarmola // Computation. – 2020. – 8(1), 8.
  8. Argyros I.K. Extended semilocal convergence for the Newton-Kurchatov method / I.K. Argyros, S.M. Shakhno, H.P. Yarmola // Matematychni Studii. – 2020. – Vol. 53, №.1. – P. 85-91.
  9. Argyros I.K. Local convergence analysis of the Gauss-Newton-Kurchatov method / I.K. Argyros, S.M. Shakhno, H.P. Yarmola // Mathematical Modeling and Computing. – 2020. – Vol. 7, No. 2. – P. 248-258.
  10. Шахно С.М. Метод Гаусса-Ньютона-Потра для нелiнiйних задач найменших квадратів за узагальнених умов Лiпшиця / С.М. Шахно, Ю.В. Шунькін, Г.П. Ярмола // Вісник Львівського університету. Серія прикладна математика та інформатика. – 2019. – Випуск 27. – C. 40-49.
  11. Ярмола Г.П. Чисельне розв’язування задачі Дiрiхле для рівняння Гельмгольца за допомогою різницевих схем підвищеного порядку / Г.П. Ярмола, А.Т. Дудикевич // Вісник Львівського університету. Серія прикладна математика та інформатика. – 2019. – Випуск 27. – C. 50-55.
  12. Shakhno S.M. Convergence of the Newton-Kurchatov method under weak conditions / S.M. Shakhno, H.P. Yarmola // Journal of Mathematical Sciences. – 2019. – Vol. 243, №. 1. – P. 1-10.
  13. Argyros I.K. Two-step solver for nonlinear equations / I.K. Argyros, S. Shakhno, H.Yarmola // Symmetry. – 2019. – Vol. 11, Iss. 2, 128.
  14. Argyros I.K. Two-step solver for equations with nondifferentiable term / I.K. Argyros, S. Shakhno, H. Yarmola // International Journal of Applied and Computational Mathematics. – 2019. – Vol. 5, Iss.3.
  15. Iakymchuk R. Gauss-Newton-Secant method for solving nonlinear least squares problems / R. Iakymchuk, H. Yarmola, S. Shakhno // PAMM Proc. Appl. Math. Mech. – 2018. – Vol. 18, Iss. 1. – P. 1-2.
  16. Shakhno S.M. Convergence analysis of the Gauss-Newton-Potra method for nonlinear least squares problems / S. M. Shakhno, H.P. Yarmola, Yu.V. Shunkin // Matematychni Studii. – 2018. – Vol. 50, №.2. – P. 211-221.
  17. Shakhno S. Gauss-Newton-Potra method for nonlinear least squares problems with decomposition of operator / S. Shakhno, H. Yarmola, Yu. Shunkin // XXXII International Conference PDMU-2018: Problems of Decision Making Under Uncertainties: Prague, Czech Republic, August 27-31, 2018: Proceedings. – 2018. – P. 153-159.
  18. Shakhno S.M. Convergence analysis of a two-step method for the nonlinear least squares problem with decomposition of operator / S.M. Shakhno, R.P. Iakymchuk, H.P. Yarmola // Journal of Numerical and Applied Mathematics. – 2018. – Vol. 128, № 2. – P. 82-95.
  19. Iakymchuk R.P. Convergence analysis of a two-step modification of the Gauss-Newton method and its applications / R.P. Iakymchuk, S.M. Shakhno, H.P. Yarmola // Journal of Numerical and Applied Mathematics. – 2017. – Vol. 126, № 3. – P. 61-74.
  20. Shakhno S.M. An iterative method for solving nonlinear least squares problems with nondifferentiable operator / S.M. Shakhno, R.P. Iakymchuk, H.P. Yarmola // Matematchni Studii. – 2017. – Vol. 48, № 1. – 97-107.
  21. Шахно С. Про збіжність методу Ньютона-Потра за слабких умов / С.М. Шахно, Г.П. Ярмола // Вісник Львівського університету. Серія прикладна математика та інформатика. – 2017. – Випуск 25. – С. 49-55
  22. Шахно С.М. Збіжність методу Ньютона-Курчатова за слабких умов / С.М. Шахно, Г.П. Ярмола // Мат. методи та фіз.-мех. поля. – 2017. – T 60, № 2. – С. 7-13.
  23. Iakymchuk R. Combined Newton-Kurchatov method for solving nonlinear operator equations / R. Iakymchuk, S.Shakhno, H. Yarmola // PAMM – Proc. Appl. Math. Mech. – 2016. – 16 (1). – P. 719-720. / DOI: 10.1002/pamm.201610348.
  24. Shakhno S.M. Analysis of the convergence of a combined method for the solution of nonlinear equations / S.M. Shakhno, I.V.Mel’nyk, H.P.Yarmola // Journal of Mathematical Sciences. – 2014. – 201, No. 1. – P.32-43.
  25. Shakhno S.M. On the two-step method for solving nonlinear equations with nondifferentiable operator / S.M. Shakhno, H.P. Yarmola // PAMM – Proc. Appl. Math. Mech. – 2012. – V. 12. – P. 617 – 618. – doi 10.1002/pamm.201210297.
  26. Shakhno S.M. Two-step combined method for solving nonlinear operator equations / S.M. Shakhno, H.P.Yarmola // Journal of Numerical and Applied Mathematics. – 2014. – № 2 (116). – С. 130-140.
  27. Shakhno S. Two-step method for solving nonlinear equations with nondifferentiable operator / S. Shakhno, H. Yarmola // Journal of Numerical and Applied Mathematics. – 2012. – № 3(109). – С.105–115.
  28. Shakhno S.M. Convergence conditions of the two-parametric secant type method for solving nonlinear equations taking into account errors / S.M. Shakhno, H.P.Yarmola // Taurida Journal of Computer Science Theory and Mathematics . – 2013. – Vol. 2. – P. 137-145.
  29. Yarmola H.P. Difference methods for solving inverse eigenvalue problem / H.P. Yarmola // Journal of Numerical and Applied Mathematics. – 2015. – №2 (119). – P. 101-106.

Наукова біографія

EDUCATION

2009-2012 Ivan Franko National University of Lviv. Post-graduate student of Faculty of Applied Mathematics and Informatics. Speciality: 01.01.07 “Numerical Mathematics”. Scientific supervisor: Associate Professor  Stepan Shakhno. Thesis of the research work: “Parametric iterative secant type methods for solving of nonlinear  equations”.
2004-2009 Ivan Franko National University of Lviv. Student of Faculty of Applied Mathematics and Informatics. Master’s degree of “Applied Mathematics” speciality; Scientific supervisor: Associate Professor   Stepan Shakhno

 

PERSONAL DATA

Ukrainian, unmarried. Place and date of birth: Lviv region, Zhovkva district, Hytreiky village, May 5, 1987.

 

HONORS AND AWARDS

2014 University of Rzeszów. Advisor: Prof. Dr.  Mirosława Zima.

 

PROFESSIONAL APPOINTMENTS

2016-до цього часу Ivan Franko National University of Lviv, Faculty of Applied Mathematics and Computer Sciences, Doсent, Department of Computational Mathematics.
2011-2016 Ivan Franko National University of Lviv, Faculty of Applied Mathematics and Computer Sciences, Assistant, Department of Numerical Mathematics

 

RESEARCH INTEREST

Numerical methods for solving of nonlinear operator equations.

 

TEACHING INTEREST

Numerical methods for solving nonlinear functional equations. Iterative solving of nonlinear boundary problems. Numerical methods of linear algebra. Methods of parallel computing.

 

SPECIAL SKILLS

Fluent in Ukrainian and Russian, satisfactory in English. Experienced in Python, С++, Pascal, Unix, Windows, Matlab, MS Office, LaTeX.

 

Розклад