Halyna Yarmola
Посада: Доцент, Computational Mathematics Department
Науковий ступінь: кандидат фізико-математичних наук
Вчене звання: доцент
Телефон (робочий): (032) 239-43-91
Електронна пошта: halyna.yarmola@lnu.edu.ua
Профіль у Google Scholar: scholar.google.com.ua
Наукові інтереси
Numerical methods for solving nonlinear operator equations.
Курси
Вибрані публікації
- Argyros I.K. Extended convergence analysis of Newton-Potra solver for equations / I.K. Argyros, S.M. Shakhno, Yu.V. Shunkin, H.P. Yarmola // Journal of Numerical Analysis and Approximation Theory. – 2021. – Vol. 49, No. 2. – P. 100-112.
- Argyros I.K. Semilocal convergence of a Newton-Secant solver for equations with a decomposition of operator / I.K. Argyros, S.M. Shakhno, H.P. Yarmola // Journal of Computational Analysis and Applications. – 2021. – Vol. 29, No. 2. – P. 279-289.
- Argyros I.K. On methods with successive approximation of the inverse operator for nonlinear equations with decomposition of the operator/ I.K. Argyros, S.M. Shakhno, H.P. Yarmola // Вісник Львівського університету. Серія прикладна математика та інформатика. – 2020. – Випуск 28. – C. 3-14.
- Argyros I.K. Method of Third-Order Convergence with Approximation of Inverse Operator for Large Scale Systems / I.K. Argyros, S.M. Shakhno, H.P. Yarmola // Symmetry. – 2020. – 12(6), 978.
- Argyros I.K. Extending the Convergence Domain of Methods of Linear Interpolation for the Solution of Nonlinear Equations / I.K. Argyros, S.M. Shakhno, H.P. Yarmola // Symmetry. – 2020. – 12(7), 1093.
- Argyros I. K. On an improved convergence analysis of a two-step Gauss-Newton type method under generalized Lipschitz conditions / I.K. Argyros, R.P. Iakymchuk, S.M. Shakhno, H.P. Yarmola // Carpathian Journal of Mathematics. – 2020. – Vol. 36 , No. 3. – P. 365-372.
- Argyros I.K. Improving Convergence Analysis of the Newton–Kurchatov Method under Weak Conditions / I.K. Argyros, S.M. Shakhno, H.P. Yarmola // Computation. – 2020. – 8(1), 8.
- Argyros I.K. Extended semilocal convergence for the Newton-Kurchatov method / I.K. Argyros, S.M. Shakhno, H.P. Yarmola // Matematychni Studii. – 2020. – Vol. 53, №.1. – P. 85-91.
- Argyros I.K. Local convergence analysis of the Gauss-Newton-Kurchatov method / I.K. Argyros, S.M. Shakhno, H.P. Yarmola // Mathematical Modeling and Computing. – 2020. – Vol. 7, No. 2. – P. 248-258.
- Шахно С.М. Метод Гаусса-Ньютона-Потра для нелiнiйних задач найменших квадратів за узагальнених умов Лiпшиця / С.М. Шахно, Ю.В. Шунькін, Г.П. Ярмола // Вісник Львівського університету. Серія прикладна математика та інформатика. – 2019. – Випуск 27. – C. 40-49.
- Ярмола Г.П. Чисельне розв’язування задачі Дiрiхле для рівняння Гельмгольца за допомогою різницевих схем підвищеного порядку / Г.П. Ярмола, А.Т. Дудикевич // Вісник Львівського університету. Серія прикладна математика та інформатика. – 2019. – Випуск 27. – C. 50-55.
- Shakhno S.M. Convergence of the Newton-Kurchatov method under weak conditions / S.M. Shakhno, H.P. Yarmola // Journal of Mathematical Sciences. – 2019. – Vol. 243, №. 1. – P. 1-10.
- Argyros I.K. Two-step solver for nonlinear equations / I.K. Argyros, S. Shakhno, H.Yarmola // Symmetry. – 2019. – Vol. 11, Iss. 2, 128.
- Argyros I.K. Two-step solver for equations with nondifferentiable term / I.K. Argyros, S. Shakhno, H. Yarmola // International Journal of Applied and Computational Mathematics. – 2019. – Vol. 5, Iss.3.
- Iakymchuk R. Gauss-Newton-Secant method for solving nonlinear least squares problems / R. Iakymchuk, H. Yarmola, S. Shakhno // PAMM Proc. Appl. Math. Mech. – 2018. – Vol. 18, Iss. 1. – P. 1-2.
- Shakhno S.M. Convergence analysis of the Gauss-Newton-Potra method for nonlinear least squares problems / S. M. Shakhno, H.P. Yarmola, Yu.V. Shunkin // Matematychni Studii. – 2018. – Vol. 50, №.2. – P. 211-221.
- Shakhno S. Gauss-Newton-Potra method for nonlinear least squares problems with decomposition of operator / S. Shakhno, H. Yarmola, Yu. Shunkin // XXXII International Conference PDMU-2018: Problems of Decision Making Under Uncertainties: Prague, Czech Republic, August 27-31, 2018: Proceedings. – 2018. – P. 153-159.
- Shakhno S.M. Convergence analysis of a two-step method for the nonlinear least squares problem with decomposition of operator / S.M. Shakhno, R.P. Iakymchuk, H.P. Yarmola // Journal of Numerical and Applied Mathematics. – 2018. – Vol. 128, № 2. – P. 82-95.
- Iakymchuk R.P. Convergence analysis of a two-step modification of the Gauss-Newton method and its applications / R.P. Iakymchuk, S.M. Shakhno, H.P. Yarmola // Journal of Numerical and Applied Mathematics. – 2017. – Vol. 126, № 3. – P. 61-74.
- Shakhno S.M. An iterative method for solving nonlinear least squares problems with nondifferentiable operator / S.M. Shakhno, R.P. Iakymchuk, H.P. Yarmola // Matematchni Studii. – 2017. – Vol. 48, № 1. – 97-107.
- Шахно С. Про збіжність методу Ньютона-Потра за слабких умов / С.М. Шахно, Г.П. Ярмола // Вісник Львівського університету. Серія прикладна математика та інформатика. – 2017. – Випуск 25. – С. 49-55
- Шахно С.М. Збіжність методу Ньютона-Курчатова за слабких умов / С.М. Шахно, Г.П. Ярмола // Мат. методи та фіз.-мех. поля. – 2017. – T 60, № 2. – С. 7-13.
- Iakymchuk R. Combined Newton-Kurchatov method for solving nonlinear operator equations / R. Iakymchuk, S.Shakhno, H. Yarmola // PAMM – Proc. Appl. Math. Mech. – 2016. – 16 (1). – P. 719-720. / DOI: 10.1002/pamm.201610348.
- Shakhno S.M. Analysis of the convergence of a combined method for the solution of nonlinear equations / S.M. Shakhno, I.V.Mel’nyk, H.P.Yarmola // Journal of Mathematical Sciences. – 2014. – 201, No. 1. – P.32-43.
- Shakhno S.M. On the two-step method for solving nonlinear equations with nondifferentiable operator / S.M. Shakhno, H.P. Yarmola // PAMM – Proc. Appl. Math. Mech. – 2012. – V. 12. – P. 617 – 618. – doi 10.1002/pamm.201210297.
- Shakhno S.M. Two-step combined method for solving nonlinear operator equations / S.M. Shakhno, H.P.Yarmola // Journal of Numerical and Applied Mathematics. – 2014. – № 2 (116). – С. 130-140.
- Shakhno S. Two-step method for solving nonlinear equations with nondifferentiable operator / S. Shakhno, H. Yarmola // Journal of Numerical and Applied Mathematics. – 2012. – № 3(109). – С.105–115.
- Shakhno S.M. Convergence conditions of the two-parametric secant type method for solving nonlinear equations taking into account errors / S.M. Shakhno, H.P.Yarmola // Taurida Journal of Computer Science Theory and Mathematics . – 2013. – Vol. 2. – P. 137-145.
- Yarmola H.P. Difference methods for solving inverse eigenvalue problem / H.P. Yarmola // Journal of Numerical and Applied Mathematics. – 2015. – №2 (119). – P. 101-106.
Наукова біографія
EDUCATION
2009-2012 | Ivan Franko National University of Lviv. Post-graduate student of Faculty of Applied Mathematics and Informatics. Speciality: 01.01.07 “Numerical Mathematics”. Scientific supervisor: Associate Professor Stepan Shakhno. Thesis of the research work: “Parametric iterative secant type methods for solving of nonlinear equations”. |
2004-2009 | Ivan Franko National University of Lviv. Student of Faculty of Applied Mathematics and Informatics. Master’s degree of “Applied Mathematics” speciality; Scientific supervisor: Associate Professor Stepan Shakhno |
PERSONAL DATA
Ukrainian, unmarried. Place and date of birth: Lviv region, Zhovkva district, Hytreiky village, May 5, 1987. |
HONORS AND AWARDS
2014 | University of Rzeszów. Advisor: Prof. Dr. Mirosława Zima. |
PROFESSIONAL APPOINTMENTS
2016-до цього часу | Ivan Franko National University of Lviv, Faculty of Applied Mathematics and Computer Sciences, Doсent, Department of Computational Mathematics. |
2011-2016 | Ivan Franko National University of Lviv, Faculty of Applied Mathematics and Computer Sciences, Assistant, Department of Numerical Mathematics |
RESEARCH INTEREST
Numerical methods for solving of nonlinear operator equations. |
TEACHING INTEREST
Numerical methods for solving nonlinear functional equations. Iterative solving of nonlinear boundary problems. Numerical methods of linear algebra. Methods of parallel computing. |
SPECIAL SKILLS
Fluent in Ukrainian and Russian, satisfactory in English. Experienced in Python, С++, Pascal, Unix, Windows, Matlab, MS Office, LaTeX. |