

IVAN FRANKO NATIONAL

UNIVERSITY OF LVIV
UNIVERSITY OF

L’AQUILA

Double-Degree Master’s Programme “InterMaths”

Applied and Interdisciplinary Mathematics

Master of Science

Applied Mathematics

Master of Science

Mathematical Engineering

IVAN FRANKO NATIONAL UNIVERSITY OF LVIV UNIVERSITY OF L’AQUILA

Master’s Thesis

Steganalysis using deep neural networks

Supervisor

 Candidate

Assoc. Prof. Yuriy Muzychuk Viktor Seredovych
 Student ID (UAQ): 279260

 Student ID (LVIV): 27210477C

ACADEMIC YEAR 2022/2023

2

Abstract

In this article, we discuss the deep learning steganalysis approach for detect-

ing images with secretly embedded content. The entire research was divided

into two main parts: preparing the steganalysis dataset and training a deep-

learning classification model for recognizing steganographic objects. We fo-

cus on well-known content-based steganography algorithms such as J-Uniward,

UERD, J-MiPOD, and LSB. We explored various deep learning architectures

and techniques to achieve high detection accuracy for some of the methods like

LSB and UERD. Conversely, the J-Uniward and J-MiPOD algorithms proved

to be resilient to steganalysis attacks at low embedding rates.

Keywords: machine learning, deep learning, steganalysis, steganography, im-

age processing

3

Contents

Abstract 2

1 Introduction 5

1.1 Terminology . 6

1.2 Problem statement . 7

2 Literature review 9

3 Cover images 11

3.1 JPEG format . 11

4 Steganography algorithms 15

4.1 Spatial domain techniques . 15

4.1.1 Least Significant Bit (LSB) 16

4.2 Transform domain techniques 18

4.2.1 J-Uniward . 18

4.2.2 UERD . 19

4.2.3 J-MiPOD . 20

5 Dataset 22

6 Model 25

6.1 Data preprocessing . 25

6.2 Architecture . 25

Abstract 4

6.3 Optimization . 26

6.4 Metrics . 27

6.5 Training . 27

7 Results 30

Conclusion 33

References . 34

5

Chapter 1

Introduction

As our world relies heavily on secure data storage and processing, cryptography

is commonly used to encrypt data. Traditional cryptography operates under

the assumption that an eavesdropper knows about the secret communication

and might attempt to reveal it. However, there are situations where it is es-

sential to conceal the very existence of the communication, and that is where

steganography becomes an essential tool.

Steganography is a practice that aims to hide information by disguising

the existence of a secret communication itself. It has various applications,

including confidential communication, secret data storage, and protecting data

from tampering through invisible digital watermarks in images.

However, steganography can also be misused for malicious purposes.

Malware developers can embed harmful code within innocent-looking files, al-

lowing them to bypass common threat detection tools and security analysts.

This makes it crucial to develop quick and reliable algorithms to detect dan-

gerous steganographic files, which is the main object of this article’s research.

Currently, most of the existing steganalysis methods approaches involve

deep learning techniques, since they have proven to be highly effective for both

concealing and detecting steganographic data. Deep learning steganalysis meth-

ods outperform statistical techniques due to their capacity for automatic feature

Introduction 6

learning and adaptability. While statistical methods depend on predefined fea-

tures, deep learning models extract relevant features directly from data, leading

to increased accuracy and robustness. This enables deep learning-based ste-

ganalysis to effectively detect concealed content across a variety of media types

and steganographic methods. That is why, in this research, we focus on the

deep neural network approach for detecting hidden steganographic data.

1.1 Terminology

This section provides an overview of key concepts in steganography that are

essential for understanding how steganography works and its potential applica-

tions.

Definition 1.1 Steganography is the technique of hiding secret data within an

ordinary, non-secret file or message to avoid detection.

Definition 1.2 Steganography files, which are also referred to as carriers, are

files that have been embedded with hidden information as a result of steganog-

raphy use.

Definition 1.3 Covers are files that can potentially be used as carriers. That

could be any file as long as there exists an embedding method that supports it.

Definition 1.4 Clean files are files that are untouched and do not have any

information embedded with steganography.

Definition 1.5 Steganalysis is the reverse process of steganography and could

be described as a process of detecting steganography by looking at variances

between bit patterns and unusually large file sizes.

Definition 1.6 The embedding rate refers to the ratio between the size of a pay-

load and its cover file. For example, if a cover image is 10 MB in size carrying

Introduction 7

1 MB of hidden data, the embedding rate of the image is 0.1 . In the context

of JPEG images, the embedding rate is measured with the bpnzAC metric. It

identifies the density of hidden information within an image, particularly in

the non-zero AC coefficients of the JPEG-compressed image. A higher bpnzAC

value implies more hidden information is embedded within the image, while a

lower value indicates less embedded information.

1.2 Problem statement

A steganographic system could be defined as a mechanism that embeds secret

message m ∈ M in a cover object x ∈ C using a secret shared stego key

k ∈ K , obtaining the steganographic file y ∈ C that carries m [1].

The set M is the set of all possible messages, K is the set of all stego

keys, and C is the set of all available cover objects. The embedding mechanism

could be described using the embedding mapping

Emb : C ×M×K → C, y = Emb(x,m, k)

This mapping has an inverse extraction mapping that extracts the hidden mes-

sage from the steganographic file

Ext : C × K → M,Ext(y, k) = m.

Given that x and y are vectors, the places where embedding changes

occur, xi ̸= yi , can be chosen randomly or using some specific selection rule

such as the content-adaptive rule. For example, if the selection rule uses in-

formation calculated from some local neighborhood, it is considered to be a

content-adaptive selection rule.

Introduction 8

Figure 1.1: Example of encoding-decoding flow: The secret message is encoded

into the cover image by using some steganography algorithm and a secret key,

forming the stego image. This image is transmitted to the receiver where the

secret message is extracted by using inverse mapping. Alternatively, the mes-

sage could be extracted by a steganalysis attack.

In this study, the cover objects are images, while the embedding messages

consist of textual data.

9

Chapter 2

Literature review

This study is heavily influenced by the research of Miko laj P lachta et al. ”De-

tection of Image Steganography Using Deep Learning and Ensemble Classifiers”

(2022) [2]. In their paper, the authors discuss the problem of detecting stegano-

graphically embedded JPEG images by employing deep neural networks. Their

research aims to compare the robustness of the most popular steganography

techniques and provide insights into the effectiveness of using shallow and deep

learning algorithms.

Another study dedicated to JPEG-based steganalysis was conducted by

Fridrich et al. at 2007, called ”Statistically Undetectable Jpeg Steganogra-

phy: Dead Ends Challenges, and Opportunities” [1]. The authors explore the

steganographic capacity of JPEG images by measuring the largest payload that

can be undetectably embedded with respect to the best steganalysis methods

available at the moment of writing.

In the paper by Cogranne et al. (2019), the authors present the ALASKA

challenge, a steganalysis competition designed to emulate the conditions faced

by forensic steganalysts. It highlights key differences from the 2010 BOSS chal-

lenge such as examining a wide variety of image sources and employing stegano-

graphic schemes suitable for color JPEGs. The authors detail the challenge’s

core components, including the RAW image dataset, cover image generation

Chapter 2. Literature review 10

methods, and embedding scheme specifics. They present initial results, analyze

the influence of various parameters, and conclude by discussing both strengths

and weaknesses, as well as future directions for practical steganalysis challenges.

Holub et al. in the research ”Universal distortion function for steganog-

raphy in an arbitrary domain” (2014) [3] introduce the universal wavelet relative

distortion (UNIWARD) method for steganography in an arbitrary domain such

as the JPEG domain (J-Uniward). The proposed method minimizes a suitably

defined distortion function to make steganographic content more difficult to

detect. The authors demonstrate that their method matches or outperforms

other state-of-the-art methods in the spatial and JPEG domains.

Guo et al. (2015) introduced the UERD method in the study ”Using

Statistical Image Model for JPEG Steganography: Uniform Embedding Revis-

ited”. The authors revisit uniform embedding for JPEG steganography using

a statistical image model. The authors propose a new framework that incor-

porates a statistical model to achieve better performance in terms of secure

embedding capacity for steganalysis. Their findings suggest that the proposed

method can effectively reduce the detectability of steganographic content.

Cogranne et al. (2020) [4] present a novel method for steganography in

JPEG-compressed images, referred to as J-MiPOD, based on minimizing the

detection accuracy using a Gaussian model of independent DCT coefficients.

The authors also explore the challenges of embedding in color JPEG images,

noting that more research is needed to better understand how to deal with color

channels in JPEG images.

11

Chapter 3

Cover images

Steganography can be utilized with a variety of digital image formats. How-

ever, JPEG, PNG, and BMP are the predominant selections. JPEG which is a

prevalent format for photographic images, is employed by 78.0% of all websites,

as indicated by [5]. This percentage is just slightly lower than the most popu-

lar format, PNG, which is utilized by 82.1% of websites. However, the JPEG

format is particularly appealing for steganography applications due to its lossy

compression algorithm and noise resilience. JPEG compression uses the Dis-

crete Cosine Transform (DCT) and quantization techniques to integrate hidden

data while minimizing the impact on visual quality. It is challenging to identify

the existence of steganographically disguised information due to the inherent

noise in JPEG pictures. These are the main reasons why in this study we are

mostly focused on JPEG images as carriers of steganographically embedded

data.

3.1 JPEG format

The JPEG (Joint Photographic Experts Group) format is a popular standard

for compressing digital images. It is a lossy compression format, meaning some

data is lost during the compression process, but the resulting file size is much

smaller than the original uncompressed image. Understanding the underlying

Cover images 12

principles of JPEG compression is essential for grasping the principles of asso-

ciated steganography algorithms. The JPEG compression algorithm is divided

into the following steps:

• Color space conversion: JPEG often uses the YCbCr color space in-

stead of the typical RGB color space. YCbCr separates the image into

luminance (Y) and chrominance (Cb and Cr) components. This step does

not reduce the amount of data because it only changes how the same in-

formation is represented.

• Subsampling: The chrominance components (Cb and Cr) are often sub-

sampled, meaning their resolution is reduced compared to the luminance

component (Y). This step exploits the fact that the human eye is less

sensitive to chrominance (color) than luminance (brightness) detail.

• Block division: The image is divided into 8x8 pixel blocks. If the image

size is not a multiple of 8, it is padded to make it so.

• Discrete Cosine Transform (DCT): Each 8x8 block undergoes a

transformation called the Discrete Cosine Transform. The DCT converts

the spatial-domain pixel values into a frequency-domain representation.

This results in a set of 64 coefficients, where the top-left coefficient (DC)

represents the average color of the block, and the other coefficients (AC)

represent different frequencies of color variation within the block. At this

step, there is still no data reduction occurs.

• Quantization: This step is where the lossy compression occurs. The

DCT coefficients are divided by a quantization matrix, which contains

values representing the human visual system’s sensitivity to different spa-

tial frequencies. The coefficients are then rounded to integers. Higher

quantization values result in more aggressive compression and more loss

of detail.

Cover images 13

• Reordering and run-length encoding: The quantized coefficients are

reordered in a zigzag pattern, grouping similar frequencies together. This

ordering helps increase the efficiency of the next step: run-length encod-

ing.

• Run-length encoding: is a lossless compression technique that replaces

sequences of the same value with a single value and a count.

• Entropy coding: The final step is to apply entropy coding, usually

through Huffman coding or arithmetic coding. This step further com-

presses the data by assigning shorter binary codes to more frequently

occurring patterns.

JPEG Compression

Input

Discrete Cosine
Transform (DCT)

&
Quantization

Entropy coding

DCT basis functions

Original gray image
(large data size)

 Compressed
JPEG image (small

data size)

Step 1

Step 4 Step 3

Step 2

DC

Lower frequency (Keep)Output High frequency (Cut)

Threshold

 The image is divided into
8x8 pixel blocks

Figure 3.1: The JPEG image compression algorithm [6]. The original image

is compressed using a Discrete Cosine Transform calculation and cut the high-

frequency component based on a thresholding value (compression ratio).

Cover images 14

When a JPEG image is opened, the compressed data is decompressed

and the DCT coefficients are inverse-transformed back into the spatial domain,

which recreates the original image.

15

Chapter 4

Steganography algorithms

In the context of steganography, the main goal is to hide information (such as

text or images) within other data (usually images or audio files) so that it’s not

perceptible to a casual observer. There are various techniques that could be

used to achieve that. The two primary categories are Spatial Domain techniques

and Transform Domain techniques.

The main differences between spatial domain and transform domain

steganography techniques are the way they hide information and their robust-

ness against attacks. Spatial domain techniques are simpler and directly modify

pixel values, while transform domain techniques involve transforming the im-

age into another domain (such as frequency or wavelet domain) and hiding

the data within the transformed coefficients. Transform domain techniques

generally provide better security and robustness but can be more complex to

implement.

4.1 Spatial domain techniques

These methods involve modifying the least significant bits (LSBs) of the pixel

values in the cover image directly. The most common spatial domain technique

is the Least Significant Bit (LSB) substitution method. The idea of this ap-

proach is to replace the least significant bits of the cover image’s pixel values

Steganography algorithms 16

with the bits of the secret message. This method is simple and easy to im-

plement, but it can be more vulnerable to detection and attacks because the

hidden data is stored directly in the image.

4.1.1 Least Significant Bit (LSB)

The LSB (Least Significant Bit) method is a steganographic technique for con-

cealing information within digital images by modifying the pixel values’ least

significant bits. Data is incorporated into the least significant bits of the cover

image in this method, making the changes imperceptible to the human eye. As

a result, the hidden information in the modified image is visually indistinguish-

able from the original image.

This technique is simple to understand and it is also quite effective since

modifying the last bit of the pixel value does not make any significant changes

to the picture. Thus, the original and cover images are not visually different.

The Least Significant Bit method for embedding secret text inside involves the

following steps:

• Convert the secret text to binary: Convert each character of the se-

cret message into its corresponding binary representation, typically using

the ASCII or Unicode encoding.

• Choose a cover image: Select an appropriate cover image to hide the

secret text in. Ideally, the number of pixels of an image should be larger

than the length of the binary representation of the hidden data to ensure

the hidden data does not significantly impact the image quality.

• Process the image: Depending on the image format, the cover image

may need to be processed. In our case, the image format is JPEG, which

means that it should be converted into an uncompressed format like PNG.

• Modify the least significant bits: For each bit of the binary secret

Steganography algorithms 17

message, select a pixel in the cover image and modify the least significant

bit of one of the color channels to match the bit of the message. Continue

this process for each bit of the message, using a different pixel for each

bit.

1 0 1 0 1 1 0 0

1 0 1 0 1 1 0 1

Least
Significant
Bit (LSB)

Original

Cover

Figure 4.1: The least significant bit of the image is replaced with the bit of the

message while preserving the overall structure of the image.

Since this method only replaces the least significant bit of each byte it

has a limitation on the maximum payload which could be embedded into the

image. However, the main disadvantage of this method is that it is vulnerable to

steganalysis and generally not secure. Moreover, the higher the embedded rate,

the more vulnerable this method becomes. So the key to preventing successful

steganalysis is to keep a low embedding rate.

One of the ways to improve the security is by using modifications to the

least significant bit algorithm, such as embedding data only into some pixels in

the image by using a particular distribution method that would decide which

pixels to use and which to leave out.

Steganography algorithms 18

4.2 Transform domain techniques

These methods involve transforming the cover image into a different domain

(such as frequency or wavelet) and then hiding the secret data within the trans-

formed coefficients. Common transform domain techniques include Discrete

Cosine Transform (DCT), Discrete Wavelet Transform (DWT), and Discrete

Fourier Transform (DFT). These techniques typically provide better robust-

ness and security compared to spatial domain methods, as they can better

resist various image processing operations and attacks. However, they can be

more complex and computationally demanding.

4.2.1 J-Uniward

J-Uniward is a content-adaptive method of computer steganography designed

for JPEG images. The algorithm was proposed by Vojtěch Holub, Jessica

Fridrich, and Tomáš Denemark in their research paper titled ”Universal Dis-

tortion Function for Steganography in an Arbitrary Domain.” [3]. It is an

extension of the Universal Wavelet Relative Distortion (UNIWARD) approach,

which is a general framework for designing steganographic schemes that mini-

mize embedding distortion in any domain.

J-Uniward builds on the idea of minimizing distortion, using a unique

cost function to measure the impact of altering the coefficients of the JPEG

image during the embedding process. This cost function, called the J-function,

is designed to balance the trade-off between the imperceptibility and robustness

of the embedded message. J-Uniward modifies the JPEG coefficients based on

this cost function, resulting in a steganographic algorithm that offers improved

performance in terms of both visual quality and security.

Steganography algorithms 19

4.2.2 UERD

The UERD (Universal Embedding for Randomized Distortion) steganography

algorithm is a general framework for steganographic schemes that are designed

to minimize embedding distortion. The term ”universal” in the name refers to

the algorithm’s adaptability to various distortion measures in different domains.

The main goal of UERD is to minimize the detectability of the hidden message

by introducing the least amount of distortion while embedding the data.

UERD was proposed by Linjie Guo, Jiangqun Ni, Wenkang Su, Sun Yat-

Sen University, Chengpei Tang in their research paper titled ”Using Statistical

Image Model for JPEG Steganography: Uniform Embedding Revisited.” [7].

The algorithm calculates the cost of embedding a message into a cover object,

like an image or audio file, and then determines the best way to modify the cover

object to minimize distortion. UERD utilizes directional filters to estimate the

local smoothness of the cover object, which helps to assess the distortion caused

by the embedding process.

• Input: A cover JPEG image, a secret message, and a key for embedding.

• Preprocessing: Divide the cover image into non-overlapping 8x8 pixel

blocks and perform Discrete Cosine Transform (DCT) on each block.

• Quantization: Apply quantization to the DCT coefficients, which re-

duces the number of bits needed to represent each coefficient.

• Embedding: Using the key, select certain DCT coefficients and embed

the secret message bits into them using a dithering mechanism. The

dithering mechanism introduces a small amount of randomness, which

helps to make the embedding process less predictable and harder to detect.

• Dequantization: Reverse the quantization process on the modified DCT

coefficients.

Steganography algorithms 20

• Inverse DCT: Apply Inverse Discrete Cosine Transform (IDCT) to each

block of modified coefficients to obtain the stego image.

The UERD algorithm is designed to be secure and robust against various

types of steganalysis attacks, as the embedding process is less predictable than

traditional uniform embedding methods. This method can determine which

regions could be considered noisy and use them to decrease the impact of the

embedded data on the statistical features of the image. That reduces the statis-

tical artifacts that can be exploited by steganalysis tools, thus making it more

challenging to detect hidden messages in JPEG images.

4.2.3 J-MiPOD

J-MiPOD is a steganography method that can be used to hide information

within JPEG-compressed images while minimizing the detectability of the

hidden data by a potential eavesdropper. It was presented in the research

”Steganography by Minimizing Statistical Detectability: The Cases of JPEG

and Color Images” by Cogranne, Rémi and Giboulot, Quentin and Bas, Patrick

[4].

The method is an extension of the MiPOD (Minimizing Probability of

Detection) scheme, which is based on the assumption that pixels in an image

are statistically independent and follow a Gaussian distribution. In MiPOD,

embedding probabilities are determined for each pixel in the image by minimiz-

ing the power of the most powerful likelihood ratio test (LRT) for detecting the

presence of hidden data.

For JPEG images, J-MiPOD takes into account the fact that the image

is compressed using the Discrete Cosine Transform (DCT) and quantization.

J-MiPOD first decompresses the DCT coefficients to obtain the original pixel

values. It then estimates the variance of the pixel values using a statistical

model that takes into account the quantization noise introduced during JPEG

compression.

Steganography algorithms 21

Once the pixel variances have been estimated, J-MiPOD determines the

probability of embedding hidden data in each pixel by minimizing the deflection

coefficient, which is a measure of how much the embedding changes the statistics

of the cover image. The embedding probabilities are then converted into costs,

which can be used to determine the optimal locations to embed the hidden

data.

22

Chapter 5

Dataset

A diverse and comprehensive dataset is essential for training an effective ste-

ganalysis model, as it allows the model to learn the hidden patterns and artifacts

introduced by various steganographic techniques. A well-constructed dataset

should include images with hidden data embedded using different stegano-

graphic methods, as well as clean images without any hidden information. Fur-

thermore, such a dataset should be large enough, since training deep learning-

based steganalysis models require a significant amount of data to learn complex

patterns and avoid overfitting.

The ALASKA#2 steganographic dataset [8] is a collection of images

specifically designed for the evaluation of steganalysis methods. It is a large-

scale dataset that contains both clean images without hidden data and stego im-

ages created using various steganographic techniques. The ALASKA#2 dataset

was introduced as a part of the Image Steganalysis Challenge in 2020. The

dataset provides a large dataset of 80,000 JPEG images from over 40 cam-

eras, including smartphones, tablets, and DSLRs, processed in a realistic and

heterogeneous manner.

Dataset 23

Figure 5.1: Samples of clean images from the dataset.

It used three embedding algorithms: J-UNIWARD, UERD, and J-MiPOD, with

an average payload of 0.4 bpnzAC, varying for each image based on complexity.

Figure 5.2 demonstrated an example of clean images and a corresponding image

with encoded data.

Figure 5.2: Clean image, image with UERD embedded data, scaled differential

image between them. The average embedding rate is 0.4 bpnzAC.

Dataset 24

The dataset was expanded by incorporating cover images with embedded

data using the Least Significant Bit (LSB) algorithm. The addition of LSB-

embedded images further broadens the dataset’s diversity and enhances the

development of steganalysis models, enabling them to better identify and adapt

to various data-hiding methods in real-world scenarios.

As a result, the final dataset consists of 75,000 clean RGB images

512x512 and the same number of images for J-UNIWARD, UERD, J-MiPOD,

and LSB steganography algorithms, which gives a total of 375,000 images.

25

Chapter 6

Model

6.1 Data preprocessing

Data preprocessing is an essential step of any deep learning model, since it

enhances the quality and consistency of the data, allowing models to learn

more effectively, converge faster, and achieve better generalization performance

on unseen data.

Firstly, the dataset was normalized by scaling all images between [0, 1].

To improve the model’s generalization and prevent overfitting, we also used

data augmentation as a part of the preprocessing pipeline. Data augmentation

is a technique used in deep learning to increase the amount and diversity of

training data without collecting new data. It is also reducing overfitting, and

increasing its ability to recognize patterns in unseen data. This was done by

applying various transformations to the existing data and creating new, altered

versions of the original samples. In particular, we applied the horizontal and

vertical flipping techniques with 0.5 probability.

6.2 Architecture

The neural network architecture was based on the EfficientNet architecture,

which is a family of convolutional neural networks designed for efficient image

Model 26

classification tasks. It was introduced by researchers at Google Brain in 2019 in

their paper ”EfficientNet: Rethinking Model Scaling for Convolutional Neural

Networks” [9]. The main goal of EfficientNet is to achieve state-of-the-art accu-

racy while significantly reducing the number of parameters and computational

cost.

The EfficientNet architecture is based on a technique called compound

scaling, which involves scaling the network depth, width, and resolution simul-

taneously. It starts from a baseline model called EfficientNet-B0 and then scales

it up to produce a range of larger models, from EfficientNet-B1 to EfficientNet-

B7.

In our experiments, the optimal model was the EfficientNet-B2, which

has a slightly larger architecture compared to EfficientNet-B1, but still main-

tains a balance between accuracy and computational efficiency. The weights

of the EfficientNet-B2 model are pretrained on a large-scale dataset called

ImageNet, which a dataset containing over 1.2 million high-resolution images

that span 1000 different object categories. This allows the model to learn rich

feature representations and generalizable patterns from a diverse range of im-

ages, which significantly speeds up the training process.

6.3 Optimization

We thoroughly developed a method for training our deep learning model by

incorporating various advanced methods to improve its performance. To begin

with, we used the Adam (Adaptive Moment Estimation) optimizer for training,

which is a popular optimization algorithm for training deep learning models.

We used a label smoothing technique for regularization to address the

model’s overfitting and enhance its generalization. This method prevents the

model from becoming overly confident in its predictions by assigning a small

probability to incorrect labels. As a result, the model is encouraged to be more

Model 27

cautious in its predictions, ultimately leading to better performance on unseen

data.

Additionally, we implemented the ReduceLROnPlateau scheduler in our

training pipeline. This learning rate scheduler monitors a validation loss and

dynamically adjusts the learning rate based on the metric’s performance. By

reducing the learning rate we were able to further optimize our training process,

allowing the model to converge to a better solution more efficiently.

6.4 Metrics

In our research, we employed two widely recognized evaluation metrics to as-

sess the performance of our deep learning model, namely the Receiver Operat-

ing Characteristic (ROC) Area Under the Curve (AUC) and accuracy. These

metrics provide a comprehensive understanding of our model’s ability to make

accurate predictions and discriminate between different classes.

The ROC AUC metric is a popular evaluation measure, particularly

for binary classification problems. It is derived from the Receiver Operating

Characteristic (ROC) curve, which is a graphical representation of the true

positive rate (sensitivity) against the false positive rate (specificity) at various

decision threshold levels. The ROC AUC quantifies the overall performance of a

classifier by calculating the area under the ROC curve. A ROC AUC value of 1

represents a perfect classifier, while a value of 0.5 indicates a random classifier.

On the other hand, accuracy is a straightforward and commonly used

metric in classification tasks. It is calculated as the ratio of correctly predicted

instances to the total number of instances.

6.5 Training

Due to the large size of the original dataset, which would require significant

computational resources for training, we decided to reduce it and experiment

Model 28

with several smaller subsets. This allowed us to investigate the impact of dataset

size on model accuracy and to identify the minimum dataset size capable of

achieving reliable predictions. We organized the deep learning model’s training

procedure using subsets of different sizes taken from the original dataset, split

into the train, test, and validation sets as 70/15/15 accordingly.

Our models were trained on the NVIDIA T4 GPU instances, which were

provisioned through the Google Cloud Compute Engine Service. Utilizing high-

performance computing resources allowed us to efficiently train large models for

a reasonable time.

Figure 6.1 illustrates the relationship between the training time of our

models and the size of the dataset, which allows us to better understand the

impact of dataset size on the model’s training efficiency.

15000 30000 50000 70000
Dataset Size

0h 0m

2h 46m

5h 33m

8h 20m

11h 6m

Tr
ai

ni
ng

 T
im

e

Figure 6.1: The training time is linearly dependent on the dataset size. The

training on the subset of 75,000 images took around 11 hours to complete.

The selection of hyperparameters was performed using a systematic pro-

cess of experimentation and validation. The batch size parameter was chosen

taking into consideration the constraints imposed by the GPU memory limit.

Model 29

The final optimal training hyperparameters are listed in Table 6.1.

Batch size 8

Epochs 15

Learning rate 0.001

Workers 4

Table 6.1: Training hyperparameters.

30

Chapter 7

Results

This chapter presents an analysis of the trained models, previously discussed in

[10]. In figure 7.1, there are shown the AUC and Loss metrics for four models of

different sizes in both training and validation datasets. It is clear that as dataset

size grows, the AUC metric improves and the overall dataset loss decreases. The

AUC in the training set shows a smooth upward trend, whereas the AUC in the

validation set shows a less consistent increase, although the general tendency

towards improvement persists.

It is important to note that, while larger dataset sizes produce better

results in general, the relationship is not strictly linear. The impact on accu-

racy improvement becomes less pronounced as the amount of data increases,

implying that the performance gains gradually diminish with each additional

increment in dataset size. Meanwhile, adding more data linearly increases train-

ing time, emphasizing the need to strike a balance between the quantity of data

and model accuracy. According to our experiments, a minimum of 15,000 im-

ages are required to achieve decent accuracy levels.

Results 31

0 2 4 6 8 10 12 14
Epoch

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800
AU

C

Epoch vs Train AUC

15000
30000
50000
70000

(a) Train dataset AUC.

0 2 4 6 8 10 12 14
Epoch

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

AU
C

Epoch vs Validation AUC

15000
30000
50000
70000

(b) Validation dataset AUC.

0 2 4 6 8 10 12 14
Epoch

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Va
lid

at
io

n
lo

ss

Epoch vs Train Loss

15000
30000
50000
70000

(c) Training loss.

Figure 7.1: General model training metrics.

To better understand the effectiveness of each used steganographic algorithm,

we trained dedicated models to classify between steganographic images of a par-

ticular method and clean images. Figure 7.2 shows the training loss and AUC

metrics for these models designed to detect images generated by J-Uniward,

UERD, J-MiPOD, and LSB algorithms. Among these models, the LSB detec-

tion model demonstrates the highest performance with a ROC AUC score of

0.99. The UERD detection model ranks second, achieving a ROC AUC score

of 0.92. However, the detection of steganographic images created by the other

two algorithms, J-MiPOD and J-Uniward, proved to be not effective, reaching a

Results 32

maximum ROC AUC score of only 0.6. This indicates high robustness of these

algorithms against deep learning steganalysis attacks at the low embedding

rate.

0 2 4 6 8 10 12 14
Epoch

0.6

0.7

0.8

0.9

1.0

AU
C

Epoch vs Train AUC

J-MiPOD
J-Uniward
UERD
LSB

(a) Train dataset AUC.

0 2 4 6 8 10 12 14
Epoch

0.6

0.7

0.8

0.9

1.0

AU
C

Epoch vs Validation AUC

J-MiPOD
J-Uniward
UERD
LSB

(b) Validation dataset AUC.

0 2 4 6 8 10 12 14
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
lid

at
io

n
lo

ss

Epoch vs Train Loss

J-MiPOD
J-Uniward
UERD
LSB

(c) Train dataset loss.

Figure 7.2: Training metrics for dedicated models.

33

Conclusion

In conclusion, this study contributes to the field of steganalysis through the

development of a deep learning-based classification model capable of distin-

guishing between images with and without embedded messages. Our results

demonstrate the practical value of the proposed approach, as evidenced by the

model’s performance in detecting steganographic images generated by various

algorithms.

We have shown that larger dataset sizes generally result in better per-

formance. However, the relationship between dataset size and model accuracy

is not linear, and the gains in accuracy diminish as the dataset size increases.

We have also determined the minimum dataset size required for achieving ac-

ceptable accuracy levels, offering practical recommendations for future research

in the field.

Our study has further provided valuable insights into the effectiveness of

deep learning steganalysis for different steganographic algorithms, revealing the

superior performance of LSB and UERD detection models. On the other hand,

the models demonstrated low effectiveness on the J-MiPOD and J-Uniward

algorithms, which appeared to be robust and almost undetectable at the low

embedding rate of 0.4 bpnzAC.

Future research could be focused on designing effective models for low

hidden data embedding rates, possibly by exploring advanced feature extraction

techniques and investigating alternative deep learning architectures.

34

References

[1] Jessica Fridrich, Tomáš Pevný, and Jan Kodovský. “Statistically Unde-

tectable Jpeg Steganography: Dead Ends Challenges, and Opportunities”.

In: Proceedings of the 9th Workshop on Multimedia ; Security. MM;Sec

’07. Dallas, Texas, USA: Association for Computing Machinery, 2007,

pp. 3–14. isbn: 9781595938572. doi: 10.1145/1288869.1288872. url:

https://doi.org/10.1145/1288869.1288872.

[2] Miko laj P lachta et al. “Detection of Image Steganography Using Deep

Learning and Ensemble Classifiers”. In: Electronics 11.10 (2022). issn:

2079-9292. doi: 10.3390/electronics11101565. url: https://www.

mdpi.com/2079-9292/11/10/1565.

[3] Vojtěch Holub, Jessica Fridrich, and Tomáš Denemark. “Universal distor-

tion function for steganography in an arbitrary domain”. In: EURASIP

Journal on Information Security 2014.1 (2014), p. 1. issn: 1687-417X.

doi: 10.1186/1687-417X-2014-1. url: https://doi.org/10.1186/

1687-417X-2014-1.

[4] Rémi Cogranne, Quentin Giboulot, and Patrick Bas. “Steganography by

Minimizing Statistical Detectability: The Cases of JPEG and Color Im-

ages”. In: Proceedings of the 2020 ACM Workshop on Information Hiding

and Multimedia Security. IH;MMSec ’20. Denver, CO, USA: Association

for Computing Machinery, 2020, pp. 161–167. isbn: 9781450370509. doi:

10.1145/3369412.3395075. url: https://doi.org/10.1145/3369412.

3395075.

https://doi.org/10.1145/1288869.1288872
https://doi.org/10.1145/1288869.1288872
https://doi.org/10.3390/electronics11101565
https://www.mdpi.com/2079-9292/11/10/1565
https://www.mdpi.com/2079-9292/11/10/1565
https://doi.org/10.1186/1687-417X-2014-1
https://doi.org/10.1186/1687-417X-2014-1
https://doi.org/10.1186/1687-417X-2014-1
https://doi.org/10.1145/3369412.3395075
https://doi.org/10.1145/3369412.3395075
https://doi.org/10.1145/3369412.3395075

Conclusion 35

[5] “W3Techs—Web Technology Surveys”. In: (7/May/2023). url: https:

//w3techs.com/technologies/overview/image_format.

[6] S. Ri et al. “Dynamic Deformation Measurement by the Sampling Moiré

Method from Video Recording and its Application to Bridge Engineer-

ing”. In: Experimental Techniques 44 (Jan. 2020). doi: 10.1007/s40799-

019-00358-4.

[7] Linjie Guo et al. “Using Statistical Image Model for JPEG Steganography:

Uniform Embedding Revisited”. In: IEEE Transactions on Information

Forensics and Security 10.12 (2015), pp. 2669–2680. doi: 10.1109/TIFS.

2015.2473815.

[8] Rémi Cogranne, Quentin Giboulot, and Patrick Bas. “The ALASKA Ste-

ganalysis Challenge: A First Step Towards Steganalysis”. In: Proceedings

of the ACM Workshop on Information Hiding and Multimedia Security.

IH;MMSec’19. Paris, France: Association for Computing Machinery, 2019,

pp. 125–137. isbn: 9781450368216. doi: 10.1145/3335203.3335726.

url: https://doi.org/10.1145/3335203.3335726.

[9] Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking Model Scaling

for Convolutional Neural Networks. 2020. arXiv: 1905.11946 [cs.LG].

[10] Viktor Seredovych and Yuriy Muzychuk. “Staganalysis using deep neu-

ral networks”. In: International Student Scientific Conference on Applied

Mathematics and Computer Sciences (ISSCAMCS) (May 2023).

https://w3techs.com/technologies/overview/image_format
https://w3techs.com/technologies/overview/image_format
https://doi.org/10.1007/s40799-019-00358-4
https://doi.org/10.1007/s40799-019-00358-4
https://doi.org/10.1109/TIFS.2015.2473815
https://doi.org/10.1109/TIFS.2015.2473815
https://doi.org/10.1145/3335203.3335726
https://doi.org/10.1145/3335203.3335726
https://arxiv.org/abs/1905.11946

	Abstract
	Introduction
	Terminology
	Problem statement

	Literature review
	Cover images
	JPEG format

	Steganography algorithms
	Spatial domain techniques
	Least Significant Bit (LSB)

	Transform domain techniques
	J-Uniward
	UERD
	J-MiPOD

	Dataset
	Model
	Data preprocessing
	Architecture
	Optimization
	Metrics
	Training

	Results
	Conclusion
	References

