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Abstract

The study of acoustics is crucial for engineering, physics, and related fields. It

offers numerous research opportunities. This thesis explores the application of

the finite element method and neural networks for dissipative acoustic problems.

The paper discusses the literature in this area and presents the math-

ematical formulation of the problem. This is followed by a description of the

method of solving the system and used software.

This thesis also introduces an algorithm for simulating a contaminated

environment. This algorithm is used to generate a dataset when solving a

mathematical problem. After that, machine learning techniques are applied to

this set of data.

The results showed that it is possible to classify data in the time domain

with higher accuracy than in the frequency domain. Moreover, it can be noted

that simple classifiers for this problem show better results than more complex

neural networks. Still, neural networks can provide instant data analysis and

decision-making capabilities for real-world examples.

Keywords: Finite Element Method, Dissipative Acoustics, Synthetic

Data Generation, Data Analysis, Neural Networks
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Chapter 1

Introduction

1.1 Motivation

The study of acoustic problems is of significant importance for engineering,

physics, and other related fields. Since the acoustics study covers the generation,

propagation, and detection of elastic waves in different materials such as gases,

liquids, and solids, it offers numerous research opportunities.

In many practical applications, acoustic waves interact with different dis-

sipative materials. For example, in medical imaging, acoustic waves are used to

produce images of the human body. In architectural acoustics, sound waves in-

teract with the building materials, which leads to absorption and attenuation.

In underwater acoustics, sound waves interact with the ocean environment,

including the sea floor, marine life, and even water temperature. These inter-

actions affect the propagation of sound. Therefore, it is used in sonar systems

for object detection or navigation.

Such problems can be modeled using partial differential equations (PDE)

and solved using numerical methods. The finite element method (FEM) is well-

suited for modeling complex geometries and materials with spatially varying

properties, making it ideal for modeling acoustic wave propagation in real-world

scenarios. Another method is the boundary element method (BEM), which is
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useful when modeling wave propagation in unbounded domains. For sure, these

problems also can be solved using analytical methods providing closed-form

solutions that are suitable for comparison and validation of numerical methods.

However, FEM can be computationally expensive and requires significant

computational resources for solving large-scale problems. On the other hand,

machine learning techniques, such as neural networks (NN), have shown great

potential in solving complex problems in various fields.

Therefore, exploring the combination of FEM and NN for dissipative

acoustic problems is an interesting research direction, which could provide effi-

cient and accurate solutions for such problems.

1.2 Objective

The goal of this thesis is to explore the use of FEM and NN for dissipative

acoustic problems. The study aims to develop numerical solutions using FEM

for solving the mathematical formulation for the given problems. The compu-

tational process will be realized with the FEniCSx library, which provides a

high-level interface for FEM simulations and allows for parallel computation

using Message Passing Interface (MPI).

In order to guarantee precision and correctness, the numerical solutions

will undergo a validation process. Upon confirmation, a synthetic dataset sim-

ulating acoustic wave propagation in both time and frequency domains will be

generated. This artificial dataset will be used for training simple classifiers and

neural networks with different architectures.

The overall goal is to evaluate the performance and effectiveness of neural

networks in analyzing and interpreting acoustic data. By training classifiers on

the simulated dataset, the thesis aims to evaluate the ability of neural networks

to classify acoustic wave properties, detect anomalies, and provide insight into

the dissipative acoustic problems under investigation.
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1.3 Thesis outline

Before going into details, the following paragraphs provide a brief overview of

this thesis and its structure:

Chapter 2 (Review of Literature) lists the relevant works related

to this paper. It involves an examination of past surveys, emphasizing the

principal discoveries, constraints, and lack of current studies.

Chapter 3 (Mathematical problem) outlines the mathematical prob-

lem of dissipative acoustic and provides the corresponding equation. Further-

more, this chapter includes the variational formulation for both time-dependent

and steady-state harmonic oscillation problems, together with energy balance

equations.

Chapter 4 (Numerical Methods) employs the Galerkin method to

the previously defined variational formulation to deduce time and frequency

domain problems.

Chapter 5 (Numerical Simulations and Computations) presents

examples of solved problems using numerical methods. The studies in this unit

cover two media, such as water and fuel oil, along with one- and two-dimensional

cases.

Chapter 6 (Contamination Problem) describes the concept of fluid

pollution with air bubbles. It is followed by a synthetic data generation method

and its implementation.

Chapter 7 (Data Analysis and Neural Network Design) focuses

on the analysis of the dataset obtained in the previous chapter. This section

describes the implementation of both simple classifiers and neural networks,

followed by their further analysis.

Chapter 8 (Conclusions) summarizes the results obtained in this pa-

per and suggests directions for future research.



Chapter 2

Review of Literature

The research in this thesis covers a variety of theoretical and practical matters,

such as Acoustic Problems, Finite Element Method (FEM), Neural Networks

(NN), as well as Parallel and Distributed Computing. Given the breadth of

these topics, it is crucial to provide a thorough literature overview for each

relevant part of the research.

Lawrence E. Kinsler, in his book [1], provides a detailed explanation of

the principles and concepts of acoustics. The book covers a wide range of top-

ics, including wave equation, wave nature, propagation, reflection, underwater

acoustic and sound interaction with different materials and environments.

Moving closer to the specifics of this work, the equations of wave motion

in ”ideal” and viscous fluid were studied in the book by Landau and Lifshitz [2].

Deducing on the time-domain displacement formulation and energy displace-

ment can be found in the paper [3]. The author also proposes two different

time implicit discretization schemes and their order of convergence.

In the paper [4], the investigation is based on previous works and consid-

ers the interaction of the acoustic fluid with an elastic solid in the presence of a

viscous medium. In addition to the time domain problem, the author presents

problems of harmonic oscillations and natural vibration.

Another example can be found in [5]. It describes the motion of the
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viscous heat-conducting Newtonian fluid for the time domain. This paper states

the variational formulation of the given problem that can be used for obtaining

the solution. It would be good to consider also the presented energy equations

and proof of the existence of the solution.

For these types of equations, for example, in [6], authors use the Petrov-

Galerkin method [7] with the one-step recurrent scheme of Cauchy integration

over time.

There are several programming software options that can be used to

solve acoustic wave propagation problems using the Finite Element Method.

These include COMSOL Multiphysics, OpenFOAM, MATLAB, and others [8,

9, 10]. Each of them has its advantages and disadvantages, such as the price

in case of a commercial product or the inability to extend its functionality.

Given the above, the optimal option could be to use the FEniCSx library, the

capabilities of which can be found in [11].

Among the literature on the combination of acoustic waves and neural

networks, it is possible to highlight the work done in [12]. The author describes

the application of Support Vector Machines (SVM) models for problems with

nonlinear viscous hydrodynamic loads.

Considering that the nature of the problem corresponds to wave motions,

it is possible to use the achievements made in other fields, for example, in [13].

There also appears to be a lack of research papers specifically describing

the usage of neural networks for detecting contamination with acoustic waves.

While neural networks and machine learning techniques have been widely em-

ployed in various fields of acoustics, including speech recognition and audio

classification, the application of neural networks for contamination detection

seems to be relatively underexplored.



Chapter 3

Mathematical Problem

This chapter focuses on the mathematical formulation of the dissipative acoustic

problem in viscous fluids discussed in [14, 15]. This part is crucial for the

research since it provides a rigorous model for describing natural phenomena.

Moreover, this also allows the derivation of further logical conclusions based on

specific assumptions while evaluating the validity of the hypotheses.

3.1 Initial-boundary problem

Let fluid occupy a limited area Ω of points x = {xj}di=1, d = 1, 2, or 3 , and

let area Ω has Lipschitz-continuous boundary Γ . The motion of the medium

is described by the displacement vector u(x, t) = {ui(x, t)}di=1 for all (x, t) ∈

Ω× [0, T ] and satisfies the following equation
ρu′′i − σij,j = 0,

σij(u) = αijkmekm(u) + cijkmekm(u
′),

eij(u) = (ui,j + uj,i)/2, in Ω× (0, T ]

(3.1)

with the boundary conditionsuj = 0 on Γu × [0, T ],Γu ⊂ Γu,mes(Γu) > 0

σijn̂ = σ̂i on Γσ × [0, T ],Γσ = Γ \ Γu

(3.2)
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and initial conditions u|t=0 = u0

u′|t=0 = v0,
(3.3)

where ρ - density, aijkm - elasticity, cijkm - viscosity, u0, v0, σ̂i - given functions

and n̂ = {ni}di=1 is a unit vector of the outer normal to the boundary Γ .

3.2 Variational formulation

Consider the space V
.
= {v ∈ [H1(Ω)]d : v = 0 on Γu} and H

.
= [L2(Ω)]d to

formulate the variational problem for (3.1)-(3.3).

Let u0 ∈ V , v0 ∈ H and v ∈ V ′ , find u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H)

such that
m(u′′(t), v) + c(u′(t), v) + a(u(t), v) = ⟨l(t), v⟩ ∀t ∈ (0, T ]

a(u(0)− u0, v) = 0,

m(u′(0)− v0, v) = 0 ∀v ∈ V,

(3.4)

where bilinear forms and linear functional have the following form

m(u, v) =
∫
Ω

ρuv dx

c(u, v) =
∫
Ω

cijkmeij(u)eij(v) dx

a(u, v) =
∫
Ω

aijkmeij(u)eij(v) dx

⟨l, v⟩ =
∫
Γσ

σ̂ivi dγ

(3.5)

and linear continuous functional l represents the external source of mechanical

energy.

3.3 Energy balance equation

To formulate the energy balance equation for the variational problem (3.4), it

is necessary to introduce notations for spaces and norms. Thus by following
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the convention established in [5]

H
.
= L2(Ω), H

.
= Hd, H(div; Ω) : {v ∈ H : ∇ · v ∈ H)} (3.6)

Given the assumptions made about the spaces, boundary Γ , and the

continuous and symmetric nature of the bilinear forms, the following norms

can be written as follows

∥v∥H
.
=

√
m(v, v) ∀v ∈ H,

∥v∥V
.
=

√
a(v, v) ∀v ∈ V (equivalent ∥ · ∥[H1(Ω)]d)

|v|V
.
=

√
c(v, v) ∀v ∈ V

(3.7)

Now given norms can be applied to the variational problem (3.4)

1

2

d

dt

[
∥u′(t)∥2H + |u(t)|2V

]
+ ∥u′(t)∥2V = ⟨l(t), u′(t)⟩ , ∀t ∈ (0, T ] (3.8)

Then by integrating over the arbitrary time interval [0, t], 0 ≤ t ≤ T

equation (3.8) can be rewritten as follows

1

2

[
∥u′(t)∥2H + |u(t)|2V

]
+

∫ t

0

∥u′(τ)∥2V dτ =

=
1

2

[
∥u′(0)∥2H + |u(0)|2V

]
+

∫ t

0

⟨l(τ), u′(τ)⟩dτ, ∀t ∈ [0, T ]

(3.9)

According to (3.9), consecutive energy expression can be written as

KS [u
′(t)] + PS [u(t)] +

∫ t

0

DS [u(τ)]dτ =

= KS [v0] + PS [u0] +QS [u
′(t)] , ∀t ∈ [0, T ]

(3.10)

where

KS [u
′(t)]

.
=

1

2
∥u′(t)∥2H − kinetic energy,

PS [u(t)]
.
=

1

2
|u(t)|2V − potential energy,

DS [u(t)]
.
= ∥u′(t)∥2V − dissipation intensity,

QS [u
′(t)]

.
=

∫ t

0

⟨l(τ), u′(τ)⟩dτ − external energy

(3.11)

caused by the kinetic motion of the fluid.
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3.4 Variational formulation of stationary har-

monic oscillations

Suppose that the oscillations in the system are caused by boundary conditions

Γσ , that vary in time according to a harmonic law with a given circular fre-

quency ω > 0 such that, the harmonic load for the equation (3.4) can be

written as

σ̂ = σ1 + iσ2 (3.12)

Therefore, it is plausible to assume that after a certain prolonged time

period, the influence of the initial conditions will be eliminated, and oscillations

in the system will occur according to the same harmonic law

u(x, t) = u∗(x)eiωt (3.13)

where

u∗(x) = u1(x) + iu2(x) (3.14)

Using (3.12) and (3.13), (3.4) can be formulated for the problem of

steady-state harmonic oscillations.

Let vectors l1, l2 ∈ L2(V ′) , 0 < ω = 2π · f = const , find u1, u2 ∈ L2(V )

such that−ω2m(u1, v1)− ωc(u2, v1) + a(u1, v1) = ⟨l1, v1⟩ ∀v1 ∈ V

−ω2m(u2, v2) + ωc(u1, v2) + a(u2, v2) = ⟨l2, v2⟩ ∀v2 ∈ V
(3.15)

where bilinear forms and linear functional are defined by (3.5).

By combining expressions in (3.15) it is possible to write balance equa-

tions as follows−ω2
[
∥u1∥2V + ∥u2∥2V

]
+
[
∥u1∥2H + ∥u2∥2H

]
= ⟨l1, v1⟩+ ⟨l2, v2⟩

ω
[
|u1|2V + |u2|2V

]
= ⟨l1, v1⟩ − ⟨l2, v2⟩

(3.16)



Chapter 4

Numerical Methods

4.1 Time domain problem

The following problem was examined in [14]. Hence, this paper only presents

the final formulation that shall be used for further analysis.

Let U 0, U̇ 0,∆t > 0, γ, β ∈ [0, 1] , find Ü j+1/2 and U̇ j+1, U j+1 such that

[
M +∆tγC + 1

2∆t2βA

]
Ü j+1/2 = L(tj+1/2)−

−CU̇ j − A

[
U j +∆tγU̇ j+1

]
U̇ j+1 = U j +∆tÜ j+1/2

U j+1 = U j + 1
2∆(U̇ j + U̇ j+1)

j = 0, 1, ... while j∆t ≤ T,

(4.1)

where the matrices M, A, C, and vector L are calculated by corresponding

bilinear forms and linear functional defined in (3.5) as follows

M = {m(φi, φk)}Ni,k=0

A = {a(φi, φk)}Ni,k=0

C = {c(φi, φk)}Ni,k=0

L = {l(φi)}Ni=0

(4.2)
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It should be noted that selecting the time integration step ∆t , the

Courant-Friedrichs-Lewy condition ∆t ≤ h
αc need to be considered, where h -

mesh diameter, c - speed of sound, α > 1 - parameter, the selection of which

could depend, in particular, on the smoothness of the basis functions [16].

4.2 Frequency domain problem

A similar discussion on the problem of steady-state harmonic oscillations is

described in 3.4 and was considered in [15].

Given vectors L1, L2 ∈ H , 0 < ω = 2π · f = const , find U1, U2 ∈ V

such that A− ω2M −ωC

ωCT A− ω2M

U1

U2

 =

L1

L2

 (4.3)

where the matrices M, A, C, and vector L are calculated by complete analogy

with (4.2).

4.3 FEniCSx

For solving problems described above with the Finite Element Method FEniCSx

library was used. FEniCSx is a new version of the popular open-source library

FEniCS for solving partial differential equations (PDEs). Utilizing it, it is

possible to easily transfer the variational formulation of the problem into an

efficient programming code using high-level Python or C++ interfaces [11, 17].

The library’s design follows the principles of compactness, modularity,

and extensibility, allowing users to easily integrate various solvers like PETSc,

efficient mesh generation, and just-in-time compilation to enhance code perfor-

mance. Additionally, the library offers the possibility of parallel execution on

both a single computer and high-performance computing (HPC) systems.

To achieve precision and efficiency in computations, it is crucial to con-

sider the tools and techniques available for addressing complex problems. Re-
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search on PETSc solvers and preconditioners [18] has shown to be particularly

valuable in this respect. This application can help speed up iterative methods

and reduce the computational expenses for given problems.



Chapter 5

Numerical Simulations and

Computations

This chapter focuses on the discussion of acoustic wave propagation in two

physical domains: water and fuel oil. Both domains have unique physical char-

acteristics that influence wave propagation.

Water

• Density: ρ = 1000 kg/m3 ,

• Speed of sound: c = 1500m/s

• Viscosity: η = 8.94 · 10−4 Pa · s

Fuel oil

• Density: ρ = 890 kg/m3 ,

• Speed of sound: c = 1360m/s

• Viscosity: η = 2.022 Pa · s

The analysis of convergence for different mesh sizes and time integration

steps can be found in [19, 20].
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5.1 One-dimensional problems

Consider a line segment with a size [0, 2.5m] and N = 103 finite elements.

The domain has rigid right wall, and the pressure p = 103Pa is applied to the

left boundary.

5.1.1 Propagation in Time Domain

For the problem described in Section 4.1 pressure is applied for pt = 7 · 10−4 s

with the total time T = 3.5 · 10−3 s and time integration step ∆t = 2 · 10−6 s .
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Figure 5.1: Water, t = 1.282 · 10−3 s.
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Figure 5.2: Water, t = 2.282 · 10−3 s.

0.0 0.5 1.0 1.5 2.0 2.5

x
6

5

4

3

2

1

0
1e 7 Displacement

0.0 0.5 1.0 1.5 2.0 2.5

x

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

0.0002

Velocity

0.0 0.5 1.0 1.5 2.0 2.5

x

250

0

250

500

750

1000

1250
Pressure

Figure 5.3: Fuel oil, t = 1.282 · 10−3 s.
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Figure 5.4: Fuel oil, t = 2.282 · 10−3 s.

Figure 5.5 show the change in energy for the system filled with water and

calculated by the equation (3.10) for extended period of time T = 7 · 10−3 s .

The plot illustrates the exchange of potential and kinetic energies and the in-

crease in dissipation over time.
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Figure 5.5: Change of energy in water.
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5.1.2 Propagation in Frequency Domain
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Figure 5.6: Water, f = 2 · 103 Hz.
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Figure 5.7: Water, f = 8 · 103 Hz.
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Figure 5.8: Fuel oil, f = 2 · 103 Hz.
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Figure 5.9: Fuel oil, f = 8 · 103 Hz.

5.2 Two-dimensional problems

Consider a square region of 0.5 x 0.5 m with a mesh division step h = 10−2 .

The domain has rigid walls, and the pressure p = 103Pa is applied to the left

boundary.

5.2.1 Propagation in Time Domain across square region

Given that the square area is considered, it is necessary to adjust the calculation

parameters, in particular: pt = 1.4 · 10−4 , T = 7 · 10−4 and ∆t = 4 · 10−7 s .
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Figure 5.10: Water - 2D projection, t = 2.4 · 10−4 s.
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Figure 5.11: Water - 3D projection, t = 2.4 · 10−4 s.
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Figure 5.12: Water - 2D projection, t = 4.4 · 10−4 s.
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Figure 5.13: Water - 3D projection, t = 4.4 · 10−4 s.
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Figure 5.14: Fuel oil - 2D projection, t = 2.4 · 10−4 s.

x

0.0
0.1

0.2
0.3

0.4
0.5

y
0.0

0.1
0.2

0.3
0.4

0.5

1e
7

0.0

0.2

0.4

0.6

0.8

1.0

Displacement

x

0.0
0.1

0.2
0.3

0.4
0.5

y
0.0

0.1
0.2

0.3
0.4

0.5

0.0000

0.0002

0.0004

0.0006

0.0008

Velocity

x

0.0
0.1

0.2
0.3

0.4
0.5

y
0.0

0.1
0.2

0.3
0.4

0.5

500
250
0

250
500
750
1000

Pressure

0.2

0.4

0.6

0.8

1.0
1e 7

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

600

400

200

0

200

400

600

800

1000

Figure 5.15: Fuel oil - 3D projection, t = 2.4 · 10−4 s.
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Figure 5.16: Fuel oil - 2D projection, t = 4.4 · 10−4 s.
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Figure 5.17: Fuel oil - 3D projection, t = 4.4 · 10−4 s.
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Figure 5.18 show the change in energy for the system filled with fuel oil

and calculated by the equation (3.10).
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Figure 5.18: Change of energy in fuel oil.

5.2.2 Propagation in Frequency Domain across square

region

The figures below show the propagation of an acoustic wave at different fre-

quencies, where uhr
, pr – real parts of the solution, and uhi

, pi – imaginary.
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Figure 5.19: Water - 2D projection, f = 2 · 103 Hz.
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Figure 5.20: Water - 3D projection, f = 2 · 103 Hz.
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Figure 5.21: Water - 2D projection, f = 8 · 103 Hz.
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Figure 5.22: Water - 3D projection, f = 8 · 103 Hz.
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Figure 5.23: Fuel oil - 2D projection, f = 2 · 103 Hz.
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Figure 5.24: Fuel oil - 3D projection, f = 2 · 103 Hz.
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Figure 5.25: Fuel oil - 2D projection, f = 8 · 103 Hz.
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Figure 5.26: Fuel oil - 3D projection, f = 8 · 103 Hz.



Chapter 6

Contamination problem

Contamination is a major issue in any study related to acoustic wave prop-

agation. To accurately model the behavior of acoustic waves in a real-world

scenario, it is essential to consider the effects of contamination on wave propa-

gation. This is particularly important when studying more complex problems

that go beyond ideal cases of homogeneous environments.

6.1 Domain model

Consider a rectangular area filled with water containing air bubbles of a given

size and density. These air bubbles represent different levels of contamination

inside the domain, as in Fig 6.1.

On top of that, suppose there is a device on the left edge that generates

sound waves through the application of pressure on the wall. And on the

opposite edge, there installed a receiver that measures pressure integral along

the boundary.
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Figure 6.1: Domain model.

Assume that air bubbles are more likely to be distributed in the central

segments of the domain. Thus, simulations are constructed in the following

way:

1. Since the contamination can be located in different parts of the rectangle,

to localize it, the domain is divided into five equal segments as in the

Figure 6.2.
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Figure 6.2: Segment division.

2. Then the number of contaminated segments is calculated using an expo-

nential distribution with parameter λ = 0.5 . ”1” is added to a generated

number, and the result is limited to the interval [1, 5].
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Figure 6.3: Distribution of number of selected segments.
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3. After selecting the number of segments, their indexes are determined by

a normal distribution with µ = 2 and σ = 2 and limited to the interval

[0,4].
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Figure 6.4: Distribution of segment indexes.

4. For each selected segment, it is assumed that the level of contamination

follows a normal distribution with µ = 0.25 and σ = 0.25 and limited to

the interval [0,0.5].
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Figure 6.5: Distribution of contamination level.

5. The coordinates of each bubble, with radius R = 0.05, within its segment

are calculated using a uniform distribution.

6.2 Model parameters

Using the region generated in Section 6.1, a number of experiments were con-

ducted for the problem (4.1). The main objective of these experiments was to

determine the time intervals in which measurements should be taken.
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Initially, a set of parameters are similar to those described in Sec-

tion 5.2.1, that is:

• Water — ρ = 1000 kg/m3 , c = 1500m/s and η = 8.94 · 10−4 Pa · s

• Air — ρ = 1.2 kg/m3 , c = 343m/s and η = 1.5 · 10−5 Pa · s

• p = 103Pa , pt = 7 · 10−4 s

• T = 3.5 · 10−3 s , ∆t = 2 · 10−6 s

• h = 1.25 · 10−2

Figure 6.6 shows the continuous recordings on the receiver throughout

the entire duration of time T for 10 randomly selected regions with contami-

nation. For consistency, the values at the receiver are additionally calculated

as the average of 4 iterations with a step of ∆t , that is, the time it takes to

pass one finite element.

Using the above mentioned assumptions, 12 time intervals with varying

values were chosen, namely: 1.344 ·10−3 , 1.632 ·10−3 , 1.784 ·10−3 , 1.864 ·10−3 ,

1.944 · 10−3 , 2.104 · 10−3 , 2.240 · 10−3 , 2.440 · 10−3 , 2.600 · 10−3 , 2.880 · 10−3 ,

3.080 · 10−3 , 3.360 · 10−3 .
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Figure 6.6: Time points.

Figure 6.7 shows the changes in acoustic pressure in both contaminated,

as in Figure 6.2 and non-contaminated domains for the first four time intervals.
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Figure 6.7: Pressure in ideal and contaminated domains.

Observing the propagation of acoustic waves in contaminated media can

be challenging because of the contrasting physical characteristics of water and

air. However, in Figure 6.8, to demonstrate the preservation of the wave struc-

ture, the data for the region with bubbles was normalized.
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Figure 6.8: Pressure in ideal and contaminated domains with normalization.

Similarly, considering experiments conducted in Section 5.2.2, the fol-

lowing set of parameters was chosen for the problem (4.3):

• Water — ρ = 1000 kg/m3 , c = 1500m/s and η = 8.94 · 10−4 Pa · s

• Air — ρ = 1.2 kg/m3 , c = 343m/s and η = 1.5 · 10−5 Pa · s

• Frequencies — f1 = 1.5 · 103 , f2 = 2 · 103 , f3 = 3 · 103 , f4 = 8 · 103Hz

• p = 103Pa

• h = 6.25 · 10−3

Figure 6.9 shows the changes in acoustic pressure in both contaminated,

as in Figure 6.2 and non-contaminated domains for the four selected frequen-

cies. Following the same principle, normalized values of pressure for the con-

taminated media are also shown in Figure 6.10.
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Figure 6.9: Pressure in ideal and contaminated domains.
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6.3 Dataset generation

For the problems described in Section 6.1 with the parameters defined in Sec-

tion 6.2, a large number of computations were required. Given the scale of the

problem, distributed computing was deemed necessary for efficient and timely

dataset generation.

Microsoft Azure is a cloud computing platform that provides a variety

of services, including the ability to conduct distributed computations. It is a

powerful tool that offers scalable and efficient solutions with a wide range of

computational needs [21].

One of the key advantages of using Microsoft Azure for distributed com-

putations is the ability to create and manage virtual machines. These virtual

machines can be configured to suit specific computational needs, such as the

number of cores and the amount of memory required. Additionally, Microsoft

Azure allows the scaling of the number of virtual machines, making it a flexible

and cost-effective solution for distributed computations.

For these computations, eight virtual machines were used, as seen in

Figure 6.11. Each ran on the Ubuntu 18.04 LTS operating system and had the

latest Docker image with FEniCSx library version 0.6.0 installed. All the code

used can be found here [22].
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Showing 1 to 8 of 8 records.

Page of 1 Give feedback

Filter for any field...

More (1)

Subscription equals all Type equals all Resource group equals all

Add filter

No grouping List view

Name Type Resource group Location Operating system

dolfinx-01 Virtual machine dolfinx West Europe Linux

dolfinx-02 Virtual machine dolfinx West Europe Linux

dolfinx-03 Virtual machine dolfinx West Europe Linux

dolfinx-04 Virtual machine dolfinx UK South Linux

dolfinx-05 Virtual machine dolfinx UK South Linux

dolfinx-06 Virtual machine dolfinx France Central Linux

dolfinx-07 Virtual machine dolfinx France Central Linux

dolfinx-08 Virtual machine dolfinx North Europe Linux

< Previous 1 Next >

Figure 6.11: Virtual machines.

Given the results described in [18], the computation time for the fre-

quency domain problem can be further reduced by using parallel computing

with Message Passing Interface (MPI). Listing 6.1 shows the code to start the

generator for virtual machines, considering all of the above.

1 def main ( ) :

2 par s e r = argparse . ArgumentParser ( )

3 par s e r . add argument ( ’−−name ’ , type=str , help=”Domain name” , d e f au l t

=’ f requency ’ )

4 par s e r . add argument ( ’−r ’ , nargs=2,type=int , help=”Input f i l e range ” ,

5 de f au l t =[0 , 1000 ] , metavar=( ’ a ’ , ’ b ’ ) )

6 args = par s e r . p a r s e a r g s ( )

7 i f args . name == ’ f requency ’ :

8 for i in range ( args . r [ 0 ] , a rgs . r [ 1 ] ) :

9 command = [ ’mpirun ’ , ’−np ’ , ’ 2 ’ , ’ . / RectangleModel−

FrequencyDomain−MPI. py ’ , ’−− i ’ , f ’ { i } ’ ]

10 p = subproces s . run (command , capture output=True , t ex t=True)

11 print (p . stdout , end=’ ’ )

12 e l i f args . name == ’ time ’ :

13 for i in range ( args . r [ 0 ] , a rgs . r [ 1 ] ) :

14 command = [ ’ . / RectangleModel−TimeDomain−MPI. py ’ ,

15 ’−− i ’ , f ’ { i } ’ ]
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16 p = subproces s . run (command , capture output=True , t ex t=True)

17 print (p . stdout , end=’ ’ )

Listing 6.1: Starting Python script

Listings 6.2 and 6.3 show functions that return initial configurations for

time and frequency domain problems, respectively.

1 def g en e r a t e t ime con f i g ( bubb le cent re s , bubb l e l v l ) :

2 t ime con f i g = {

3 ’mesh ’ : {

4 ’N ’ : 40 ,

5 ’ bubb l e rad ius ’ : 0 . 05 ,

6 ’ bubb l e c en t r e s ’ : bubb le cent re s ,

7 ’ b ubb l e l v l ’ : bubb l e l v l

8 } ,

9 ’ problem ’ : {

10 ’ f l u i d ’ : ’Water ’ ,

11 ’ contaminant ’ : ’ Air ’ ,

12 ’ p r e s su r e ’ : 1e3 ,

13 ’T ’ : 3 . 5 e−3,

14 ’ dt ’ : 2e−6,

15 ’ pt ’ : 7e−4,

16 ’ de lay ’ : 1 . 0 ,

17 ’ c on t r o l t ime ’ : np . array ( [ 1 6 8 , 204 , 223 , 233 , 243 , 263 ,

18 280 , 305 , 325 , 360 , 385 , 420 ] ) ∗4

19 } ,

20 ’ pe t s c ’ : {

21 ’ s o l v e r ’ : ’ preonly ’ ,

22 ’ pc ’ : ’ lu ’

23 } ,

24 ’ r e s u l t s ’ : {

25 ’ s a v e me s h t o f i l e ’ : False ,

26 ’ f i l e p r e f i x ’ : False ,

27 ’ s av e s t ep ’ : 25 ,

28 } ,

29 ’ l o g s ’ : False

30 }

31 return t ime con f i g

Listing 6.2: Time domain config
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1 def g en e r a t e f r e qu en cy c on f i g ( bubb le cent re s , bubb l e l v l ) :

2 f r e qu en cy con f i g = {

3 ’mesh ’ : {

4 ’N ’ : 80 ,

5 ’ bubb l e rad ius ’ : 0 . 05 ,

6 ’ bubb l e c en t r e s ’ : bubb le cent re s ,

7 ’ b ubb l e l v l ’ : bubb l e l v l

8 } ,

9 ’ problem ’ : {

10 ’ f l u i d ’ : ’Water ’ ,

11 ’ contaminant ’ : ’ Air ’ ,

12 ’ p r e s su r e ’ : 1e3 ,

13 ’ f r e q i d x ’ : 0 ,

14 ’ c o n t r o l f r e q u e n c i e s ’ : [ 1 . 5 e3 , 2e3 , 3e3 , 8 e3 ]

15 } ,

16 ’ pe t s c ’ : {

17 ’ s o l v e r ’ : ’ preonly ’ ,

18 ’ pc ’ : ’ lu ’

19 } ,

20 ’ r e s u l t s ’ : {

21 ’ s a v e me s h t o f i l e ’ : False ,

22 ’ f i l e p r e f i x ’ : False ,

23 } ,

24 ’ l o g s ’ : False

25 }

26 return f r e qu en cy con f i g

Listing 6.3: Frequency domain config

In this way, both problems were solved for a set of 7000 contaminated

media. The time taken for the frequency domain problem was 6 hours, and 8.5

hours for the time domain.



Chapter 7

Data Analysis and Neural

Network Design

This chapter focuses on the exploration of the generated dataset from Chapter 6

to gain insights into its underlying structure and patterns. The aim is to develop

simple classifiers and neural networks that can distinguish contamination inside

the domain and accurately predict outcomes.

7.1 Time Domain dataset exploration and clas-

sification

In this and the next section, descriptive characteristics of the dataset are pro-

vided. The purpose of this step is to examine the data and find some useful

information that can be used in the further construction of the neural networks.

Table 7.1 shows the initial data obtained after the dataset generation

for the Time Domain problem, where zi - contamination level in i-th segment,

i = 1..5 , and p(tj) - value of of pressure on a receiver at time tj, j = 1..12 .
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Table 7.1: Initial Time Dataset

z1 z2 z3 z4 z5 p(t1) p(t2) ... p(t11) p(t12)

0 0.0 0.0 0.0 0.0 0.0 -3.95e+01 -9.85e+01 ... 1.07e+02 -8.97e+01

1 0.0 0.0 0.1571 0.1885 0.0 1.47e-01 -1.06e+00 ... -4.69e+01 6.81e+01

2 0.0628 0.1885 0.0 0.0 0.0 4.92e+00 -5.57e+00 ... 1.32e+01 2.23e+01

... ... ... ... ... ... ... ... ... ... ...

6991 0.0 0.0 0.0 0.0942 0.0 -8.59e+00 -2.50e+01 ... 4.96e+01 -5.13e+01

6992 0.0 0.0 0.0 0.0 0.2199 -2.38e+00 -1.36e+01 ... 1.26e+02 -5.74e+01

6993 0.0 0.0 0.0 0.1885 0.0 8.57e+00 -1.59e+01 ... 2.94e+01 -8.13e+01

The first step in preparing the data was to convert the percentage of

contamination with respect to contamination threshold cT . That is, if the

contamination is greater than 0, the segment value is True, otherwise - False,

as shown in Table 7.2, where z∗i and pN(tj) are the transformed values.

Also, to ensure that all features have the same weight in the analysis, it

is necessary to scale them to the same level. For this purpose, the ‘Standard-

Scaler‘ from the ‘sklearn‘ library was used. This transformation helps to

eliminate any bias towards features with large values that can lead to inaccurate

results. It also improves numerical stability, making optimization algorithms

more efficient in convergence.

Table 7.2: Transformed Time Dataset

z∗1 z∗2 z∗3 z∗4 z∗5 pN(t1) pN(t2) ... pN(t11) pN(t12)

0 False False False False False -6.645584 -3.204366 ... 1.318628 -0.736776

1 False False True True False 0.124733 0.570926 ... -0.720212 1.566839

2 True True False False False 0.939794 0.396187 ... 0.075982 0.898236

... ... ... ... ... ... ... ... ... ... ...

6991 False False False True False -1.367240 -0.356624 ... 0.558203 -0.176201

6992 False False False False True -0.306790 0.085066 ... 1.570336 -0.265250

6993 False False False True False 1.563086 -0.004047 ... 0.290597 -0.614150
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In the analysis of the dataset, the ‘ydata-profiling‘ library was used

to generate summary statistics that include the frequency distribution, unique

values, and a number of missing values for each dataset column. Addition-

ally, ‘ydata-profiling‘ offers visualization tools, like scatter plots, box plots,

and histograms, which aid in dataset exploration and analysis [23]. Figure 7.1

showcases one of the examples from obtained results.

t_6
Real number (ℝ)

Distinct 2034

Distinct (%) 33.4%

Missing 0

Missing (%) 0.0%

Infinite 0

Infinite (%) 0.0%

Mean 1.1208035 × 10-16

Minimum -4.5541991

Maximum 3.6935314

Zeros 0

Zeros (%) 0.0%

Negative 3049

Negative (%) 50.1%

Memory size 95.1 KiB

Quantile statistics

Minimum -4.5541991

5-th percentile -1.6563478

Q1 -0.65937556

median -0.0012289559

Q3 0.65831084

95-th percentile 1.6076358

Maximum 3.6935314

Range 8.2477305

Interquartile range (IQR) 1.3176864

Descriptive statistics

Standard deviation 1.0000822

Coefficient of variation (CV) 8.9229035 × 10

Kurtosis 0.26233287

Mean 1.1208035 × 10

Median Absolute Deviation (MAD) 0.65870388

Skewness -0.0077330439

Sum 8.8518082 × 10

Variance 1.0001643

Monotonicity Not monotonic

15

-16

-13

Figure 7.1: Profile report for values pN(t6) .

Figure 7.2 and Table 7.3 display the correlation coefficients between

variables in a dataset. This analysis is significant for building classifiers since

it can aid in feature selection and provide insights into how different features

are related. Therefore, it can be seen that the first segment has the highest

correlation with all time intervals. Besides, pN(t2) , pN(t4) , pN(t7) , and p(t10)

correlate with each segment more than others.
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Figure 7.2: Correlation plot for Transformed Time Dataset.

Table 7.3: Correlation matrix for Transformed Time Dataset

pN(t1) pN(t2) pN(t3) pN(t4) pN(t5) pN(t6) pN(t7) pN(t8) pN(t9) pN(t10) pN(t11) pN(t12)

z∗1 0.154 0.196 0.271 0.333 0.375 0.332 0.275 0.221 0.319 0.320 0.294 0.272

z∗2 0.169 0.199 0.178 0.241 0.218 0.151 0.143 0.151 0.142 0.271 0.247 0.184

z∗3 0.159 0.206 0.179 0.236 0.218 0.185 0.123 0.156 0.168 0.250 0.207 0.168

z∗4 0.153 0.223 0.178 0.228 0.197 0.151 0.120 0.096 0.141 0.210 0.150 0.131

z∗5 0.157 0.236 0.160 0.305 0.190 0.100 0.323 0.135 0.088 0.277 0.196 0.173

Figure 7.3 shows a comparison of correlation plots at various contamina-

tion thresholds. This involved testing whether changing it from 0 to a specific

value would increase correlation. This approach also makes it possible to simu-

late a real-world scenario where the case being considered is not entirely ideal.

Based on obtained results, it can be concluded that the optimal threshold is

10%.
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(a) cT = 0.0% (b) cT = 5.0%

(c) cT = 7.5% (d) cT = 10.0%

(e) cT = 15.0% (f) cT = 20.0%

Figure 7.3: Correlation plots with different contamination thresholds cT .
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The transformed dataset was assessed for the effectiveness of simple clas-

sifiers in predicting contaminated segments using a set of 12 features. Similar

comparisons have been previously made in [24]. Logistic Regression (LogReg),

Random Forest (RF), K-Nearest Neighbors (KNN), Support Vector Machines

(SVM), Gaussian Naive Bayes (GNB), and Extreme Gradient Boosting (XGB)

were utilized as classifiers for this task. Each classifier was trained and eval-

uated on both the train and test data to determine its accuracy in predicting

contaminated segments.

To study the classification accuracy, a group of the following five metrics

was chosen:

1. ‘accuracy‘ : measures the classifier’s ability to correctly identify in-

stances as either contaminated or non-contaminated.

2. ‘precision weighted‘ : calculates the weighted average of the precision

for each class. This demonstrates how accurately the classifier predicted

contaminated segments without falsely classifying non-contaminated ones.

3. ‘recall weighted‘ : computes the weighted average of the recall for each

class. A recall score indicates the prediction of a large proportion of con-

taminated segments without missing many actual contaminated segments.

4. ‘f1 weighted‘ : estimates the weighted harmonic mean of precision and

recall for each class. A high F1 score suggests that the classifier performed

well overall, with a strong balance between precision and recall.

5. ‘roc auc‘ : This metric measures the ability of the classifier to distin-

guish between the contaminated and non-contaminated segments by plot-

ting the true-positive rate (sensitivity) against the false-positive rate (1-

specificity) at various threshold values.
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(b) Segment 2.
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(d) Segment 4.

GNB KNN LogReg XGB RF SVM
classifier

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

va
lu

es

Classification Metrics for 'Segment 5' (Time domain)
test_f1_weighted
test_recall_weighted
test_accuracy
test_precision_weighted
test_roc_auc

(e) Segment 5.

Figure 7.4: Classification metrics comparison.

The results of the evaluation of the simple classifiers on the current

dataset indicate that SVM performs better, achieving an accuracy rate of 75–

80%. Therefore, this implies that SVM is the most effective classifier for pre-

dicting contaminated segments in the time domain using this particular set of

features.

RF and XGB were found to be the next most effective classifiers, achiev-
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ing similar performance with accuracy rates of 70–75%. These results demon-

strate the potential of ensemble methods in predicting contaminated segments,

as RF and XGB are both ensemble-based algorithms that utilize multiple deci-

sion trees to make predictions.

The remaining classifiers, including Logistic Regression, KNN, and GNB,

showed relatively worse performance with accuracy rates of 60–70%. It implies

that these classifiers may not be as effective as SVM, RF, and XGB but still

can be used in some cases.

The evaluation results also showed that segments 1, 3, and 5 were better

recognized by all classifiers, as expected from the correlation diagram. It also

indicates that these segments may have a stronger relationship with the pres-

ence of contamination and that the selected features can effectively reflect this

relationship.

7.2 Frequency Domain dataset exploration and

classification

Table 7.4 shows the initial data obtained after the dataset generation for the

Frequency Domain problem, where zi - contamination level in i-th segment,

i = 1..5 , and preal/imag(fj) - value of of pressure on a receiver at frequency

fj, j = 1..4 . Similarly to the previous section, the values for the segments were

also transformed according to the contamination threshold cT = 0 .
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Table 7.4: Initial Frequency Dataset

z∗1 z∗2 z∗3 z∗4 z∗5 preal(f1) pimag(f1) ... preal(f4) pimag(f4)

0 False False False False False 4.05e+02 -2.52e-04 ... 5.19e+02 -3.20e-04

1 False False True True False -4.06e+02 -2.61e-05 ... 1.22e+03 -2.07e-02

2 True True False False False 3.48e+01 -7.50e-06 ... 2.28e+03 -5.13e-02

... ... ... ... ... ... ... ... ...

6996 False False False True False 3.13e+02 -1.86e-04 ... 1.38e+03 1.12e-02

6997 False False False False True 4.72e+02 -3.83e-04 ... -9.99e+02 -5.01e-03

6998 False False False True False -8.07e+02 -1.65e-04 ... -1.98e+02 -3.37e-03

f_1_r
Real number (ℝ)

Distinct 6086

Distinct (%) 99.9%

Missing 0

Missing (%) 0.0%

Infinite 0

Infinite (%) 0.0%

Mean -452.27542

Minimum -1787924.2

Maximum 836106.92

Zeros 0

Zeros (%) 0.0%

Negative 3245

Negative (%) 53.2%

Memory size 95.2 KiB

Quantile statistics

Minimum -1787924.2

5-th percentile -1530.9377

Q1 -299.27207

median -79.322737

Q3 332.38657

95-th percentile 1844.3355

Maximum 836106.92

Range 2624031.1

Interquartile range (IQR) 631.65865

Descriptive statistics

Standard deviation 35730.489

Coefficient of variation (CV) -79.001617

Kurtosis 1699.0338

Mean -452.27542

Median Absolute Deviation (MAD) 323.69459

Skewness -32.275624

Sum -2756618.7

Variance 1.2766679 × 10

Monotonicity Not monotonic

9

Figure 7.5: Profile report for preal(f1) with outliers.

The study of the value distribution of the obtained results showed some

anomalies. For example, Figure 7.5 illustrates the descriptive statistics for the

first value. As can be seen, certain outliers appeared during the calculations.

To eliminate them, a detailed data review was performed, which led to the

following assumption: A row is considered to have an outlier if at least

one value |preal(fi)| > 5000, i = 1..4 .

The updated descriptive statistics are presented in Figure 7.6, and it

shows considerable improvements.
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f_1_r
Real number (ℝ)

Distinct 4877

Distinct (%) 99.8%

Missing 0

Missing (%) 0.0%

Infinite 0

Infinite (%) 0.0%

Mean -11.508409

Minimum -4984.7439

Maximum 4966.3156

Zeros 0

Zeros (%) 0.0%

Negative 2688

Negative (%) 55.0%

Memory size 76.3 KiB

Quantile statistics

Minimum -4984.7439

5-th percentile -1224.6505

Q1 -297.42525

median -89.724695

Q3 300.82471

95-th percentile 1262.7654

Maximum 4966.3156

Range 9951.0594

Interquartile range (IQR) 598.24996

Descriptive statistics

Standard deviation 895.29334

Coefficient of variation (CV) -77.794713

Kurtosis 8.0073907

Mean -11.508409

Median Absolute Deviation (MAD) 304.86242

Skewness 0.10470185

Sum -56230.084

Variance 801550.17

Monotonicity Not monotonic

Figure 7.6: Profile report for preal(f1) without outliers.

Following the steps in Section 7.1, the dataset was normalized using the

same principle, and the results can be seen in Table 7.5, where pNreal/imag(fj)

are the transformed values.

Table 7.5: Transformed Frequency Dataset

z∗1 z∗2 z∗3 z∗4 z∗5 pNreal(f1) pNimag(f1) ... pNreal(f4) pNimag(f4)

0 False False False False False 0.465532 0.141150 ... 0.395153 0.065420

1 False False True True False -0.440723 0.229752 ... 1.119857 -0.059636

2 True True False False False 0.051675 0.237055 ... 2.212240 -0.247145

... ... ... ... ... ... ... ... ... ... ...

6992 True False False False False -0.065389 0.244164 ... -1.001915 0.042173

6993 False True False False False -0.161434 0.242397 ... 0.016651 0.049933

6997 False False False False True 0.540650 0.089389 ... -1.171320 0.036649

Figure 7.7 and Table 7.6 show the correlation coefficients between vari-

ables in a dataset. Evaluating this diagram, it can be noted that the correlation

of segments is higher at lower propagation frequencies. This is because waves

at lower frequencies are more resistant to interference. It can also be seen that
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the imaginary part of the solutions carries less information than the real part.

And, like in the example with the time domain, the first segment has the highest

correlation value.

Figure 7.7: Correlation plot for transformed Frequency Dataset.

Table 7.6: Correlation matrix for transformed Frequency Dataset

pNreal(f1) pNimag(f1) pNreal(f2) pNimag(f2) pNreal(f3) pNimag(f3) pNreal(f4) pNimag(f4)

z∗1 0.227 0.131 0.346 0.235 0.149 0.013 0.072 0.021

z∗2 0.195 0.049 0.249 0.196 0.136 0.014 0.043 0.027

z∗3 0.151 0.035 0.187 0.204 0.141 0.000 0.071 0.010

z∗4 0.069 0.082 0.133 0.137 0.095 0.000 0.051 0.035

z∗5 0.107 0.000 0.144 0.140 0.092 0.029 0.064 0.032

Figure 7.8 illustrates the correlation diagram, which shows that, also,

for this problem, it is optimal to take a contamination threshold equal to 7.5

or 10 percent but to be consistent with the previous case, 10% was chosen.
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(a) cT = 0.0% (b) cT = 5.0%

(c) cT = 7.5% (d) cT = 10.0%

(e) cT = 15.0% (f) cT = 20.0%

Figure 7.8: Correlation plots with different contamination thresholds cT .
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(b) Segment 2.
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(c) Segment 3.
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(d) Segment 4.
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Figure 7.9: Classification metrics comparison.

The same set of comparisons was conducted for the frequency domain

problem, see Figure 7.9. In this case, SVM, RF, and XGB demonstrated good

performance, achieving accuracy rates of 65–70%. These findings suggest that

these classifiers are robust and effective for predicting contamination based on

the selected features.
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On the other hand, the remaining classifiers showed relatively inferior

performance, with accuracy rates ranging between 50% and 60%. This indi-

cates that these classifiers may not be as well-suited for handling the frequency

domain problem in predicting contaminated segments.

It can be observed that the performance of all classifiers degraded slightly

from the first segment to the last one. This degradation implies that the classi-

fiers may struggle to accurately classify the latter segments, potentially due to

the lack of information about temporal changes, as it was in the time domain

problem.

7.3 Prediction with neural networks

After conducting classification on both the time and frequency domain prob-

lems, it was decided to test more complex tools to check if they could further

improve the prediction accuracy. As a result, neural networks were selected as

the next phase of research. By incorporating them, the aim was to leverage

the power of deep learning and its ability to capture complex relationships and

patterns in the data.

The neural network models’ architectures were created and defined using

Keras, a high-level neural networks API. It has a user-friendly interface that

allows for easy configuration of various layers, activation functions, and opti-

mization algorithms. TensorFlow was used as the backend engine for executing

the computations involved in training and evaluating the models. TensorFlow is

an ideal choice for implementing deep learning algorithms as it provides efficient

numerical computation and automatic differentiation capabilities[25, 26].

To work with the neural network, the working dataset was divided into

three subsets. The training set consisted of 80%, and the rest was split between

the validation and test sets in the ratio of 60% to 40%, respectively.

The goal of this neural network was to predict the presence of contamina-
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tion in each segment according to the threshold value. The data were analyzed

with different characteristics of neural networks, such as the type and number

of hidden layers, the number of neurons in each layer, and different activation

functions.

Listing 7.1 shows a part of the code that was used to build and train the

model for the time domain problem. It consists of three layers with the ReLU

activation function and different numbers of neurons, between which there are

also layers for regularization. The output layer has the HardSigmoid activation

function because the outcome can only be True or False. For the loss function,

the Mean squared error (MSE).

As for the optimal training parameters, they were selected through a

process of trial and error and set to the following: the number of epochs equal

to 128 and batch size to 64. Additionally, an early stop was added to prevent

overfitting if there is no improvement within 32 epochs.

1 model = Sequent i a l ( [

2 Dense (64 , a c t i v a t i o n=’ r e l u ’ ) ,

3 Dropout ( 0 . 2 ) ,

4 Dense (32 , a c t i v a t i o n=’ r e l u ’ ) ,

5 Dropout ( 0 . 2 ) ,

6 Dense (8 , a c t i v a t i o n=’ r e l u ’ ) ,

7 Dense (5 , a c t i v a t i o n=t f . keras . a c t i v a t i o n s . hard s igmoid )

8 ] )

9

10 model . compile ( l o s s=’ mean squared error ’ ,

11 opt imize r=’adam ’ ,

12 metr i c s=[ ’ accuracy ’ ] )

13

14 # tra i n parameters

15 epochs=128

16 ba t ch s i z e=64

17

18 e a r l y s t opp i ng = EarlyStopping ( monitor=’ v a l l o s s ’ ,

19 pat i ence =32,

20 r e s t o r e b e s t w e i g h t s=True)

21



58

22 h i s t o r y = model . f i t ( X train ,

23 y t ra in ,

24 epochs=epochs ,

25 ba t ch s i z e=batch s i z e ,

26 va l i d a t i on da t a=(X val , y va l ) ,

27 c a l l b a ck s =[ ea r l y s topp ing , TqdmCallback ( verbose=1) ] ,

28 verbose=0)

Listing 7.1: Description of ‘Model 1‘

Figure 7.10 shows the training process of this model. During the analysis,

it was also seen that neural networks performed poorly when there was more

than one contaminated segment in the record. In this case, the prediction

results reached only 47.31% for the test set.
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Figure 7.10: Training history for ‘Model 1‘.

On the other hand, when the neural network was trained on data where

only the single segment was contaminated, it gave slightly better results, see

Figure 7.11. As can be noticed, it managed to predict with a probability close

to 60%. This model produced an accuracy of 59.63% on the test data, which

is a rather good result given the complexity of the task.
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Figure 7.11: Training history for ‘Model 1‘ with single contaminated segment.

Listing 7.2 shows another variation of the neural network model with

a recurrent layer. This solution is based on the fact that the values of the

receiver are obtained sequentially over a certain time period, thereby allowing

consideration of the temporal properties of the data.

1 model = Sequent i a l ( [

2 Dense (32 , input shape=[X. shape [ 1 ] , 1 ] , a c t i v a t i o n=’ r e l u ’ ) ,

3 Dropout ( 0 . 2 ) ,

4 SimpleRNN(64 , a c t i v a t i o n=’ r e l u ’ ) ,

5 Dropout ( 0 . 2 ) ,

6 Dense (16 , a c t i v a t i o n=’ r e l u ’ ) ,

7 Dropout ( 0 . 2 ) ,

8 Dense (8 , a c t i v a t i o n=’ r e l u ’ ) ,

9 Dense (5 , a c t i v a t i o n=t f . keras . a c t i v a t i o n s . hard s igmoid )

10 ] )

11

12 model . compile ( l o s s=’ mean squared error ’ ,

13 opt imize r=’adam ’ ,

14 metr i c s=[ ’ accuracy ’ ] )

15

16 # tra i n parameters

17 epochs=256

18 ba t ch s i z e=64

19
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20 e a r l y s t opp i ng = EarlyStopping ( monitor=’ v a l l o s s ’ ,

21 pat i ence =64,

22 r e s t o r e b e s t w e i g h t s=True)

23

24 h i s t o r y = model . f i t ( X train ,

25 y t ra in ,

26 epochs=epochs ,

27 ba t ch s i z e=batch s i z e ,

28 va l i d a t i on da t a=(X val , y va l ) ,

29 c a l l b a ck s =[ ea r l y s topp ing , TqdmCallback ( verbose=1) ] ,

30 verbose=0)

Listing 7.2: Description of ‘Model 2‘

The second model did not show any improvement during training, see

Figure 7.12. Another drawback was that it took longer to train this model, and

the prediction results were only 42.74%.
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Figure 7.12: Training history for ‘Model 2‘.

In Figure 7.13, some improvements in the results can be seen once again

for the model with a single contaminated segment with train accuracy is equal

to 49.98%.
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Figure 7.13: Training history for ‘Model 2‘ with single contaminated segment.

For the frequency domain problem, there were also attempts to build a

neural network. For this purpose, ‘Model 1‘, shown in Listing 7.1, was used.

Figure 7.14 illustrates that the training results are unsatisfactory. This situation

can be justified by the fact that the specifics of the case do not allow capturing

temporal changes, and the values have a low correlation, as shown in Table 7.6.

The value of test accuracy in this case is equal to 44.12%.
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Figure 7.14: Training history for ‘Model 1‘.
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Considering the case of a single contaminated segment, it is possible to

achieve better results. This process can be seen in Figure 7.15. And the final

accuracy value during testing was 52.33%.
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Figure 7.15: Training history for ‘Model 1‘ with single contaminated segment.



Chapter 8

Conclusions

8.1 Summary

In this thesis, a study on the application of the finite element method and

neural networks was conducted. This process was logically divided into several

key steps: studying the mathematical problem, solving the system, building a

new model, and producing data, as well as analyzing the resulting dataset and

application of machine learning.

The first step was to review the literature and describe the mathematical

problem. Thus, the key research in this area was highlighted and explained the

motivation behind writing the paper. Then the mathematical problem and

its variation formulation were presented. And to show the correctness of the

problem, the paper also includes energy equations.

After a strict formulation of the problem, the second step was to study

the process of calculations. Therefore, the original problem was divided into

two subproblems: Time Domain and Frequency Domain. For each of them, a

discretization scheme for solving by the finite element method was presented.

Special attention should be given to the FEniCSx library, which was

used for all calculations. Thus, it was possible to significantly reduce the time

for implementing the solver and take advantage of parallel computing. All the
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code, including Jupyter Notebooks, Python files, and generated data, is publicly

available in the GitHub repository mentioned in this paper. The repository also

contains the source code used in the following sections.

Next, examples of solved problems in one- and two-dimensional cases

for two media with different physical properties were presented. These results

show how acoustic waves behave in ideal media and give an understanding of

the physical nature of the problem.

The following step was to apply the findings to a practical example.

Therefore, it was assumed that there exists contamination in a certain medium.

To determine it, the previous problem could be used, meaning that there is a

generator at one end and a receiver at the other. Thus, values about contam-

ination level were collected by solving this problem many times and modeling

different scenarios.

The paper presents a method for generating different cases of contam-

ination, in this case, air bubbles. This algorithm involves several sequential

steps using different distribution functions. In this way, it is possible to cover

the lack of data from real-world examples.

The last step, which covered a big part of the research, was to analyze

the data and build neural networks. Based on this information, it is possible

to derive certain conclusions about the feasibility of using machine learning

algorithms and neural networks.

A descriptive study of the dataset showed the dependence of some pa-

rameters on others, the influence of the receiver’s data on media contamination,

and identified anomalies that could have occurred during the computations.

Therefore, for two subproblems, classifiers were used to determine the

presence of contamination that exceeds a certain critical value. From the results,

it can be concluded that it is possible to classify data in the time domain with

a slight but higher accuracy than in the frequency domain.

As for the use of neural networks, in other words, the transformation
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of the problem into a multiclassification task, the current results did not pro-

vide much accuracy. Thus, it can be concluded that the use of more complex

algorithms did not lead to improved results.

Still, the usage of developed in this thesis neural networks simplifies

real-case scenarios by providing instant data analysis and decision-making ca-

pabilities without requiring excessive memory and resources. The compact ar-

chitecture allows for their deployment on various devices, enabling timely and

resource-efficient operations.

8.2 Future research directions

The following paragraphs provide suggestions that can be used in future re-

search.

Explore and develop new algorithms for generating contamination inside

a domain. The current approach assumes non-homogeneous contamination with

bubbles, but investigating alternative algorithms could provide diverse scenar-

ios, enhancing the accuracy and applicability of the simulations.

Take outliers into account when analyzing datasets. While outliers are

often considered noise, they may contain valuable information that can con-

tribute to a better understanding of the contamination problem. Developing

techniques to identify and analyze outliers could unveil unique insights and

improve the overall data analysis process.

Investigate and optimize neural networks. Research can focus on ex-

ploring new architectures, activation functions, or optimization algorithms to

enhance performance, efficiency, and applicability.
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