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Abstract

In the last years, object detection tasks were mastered by various kinds of Deep

Neural Networks, but there is still a chance of objects being missed or mis-

classified. The third-party, the attacker, might be willing to fail the detection

on purpose to benefit from incorrect prediction. In this paper, the problem of

adversarial attacks on object detection systems is described and evaluated.

The custom dataset of military armored vehicles on satellite images is gen-

erated. The machine learning model is built using YOLO architecture to solve

the problem of real-time military vehicle detection. Then its vulnerabilities are

exploited to the known adversarial attacks, showing that such systems have a

constant need for improvement.

The impact of data poisoning attacks on this model is studied. Authors

use one of the known backdoor attacks to compromise the model. Attacks

with different intensities are performed to study the algorithm’s behavior. In

addition, a new modification of this approach, called regional poisoning, is

proposed to improve the stealthiness of the attack.

Keywords: machine learning, object detection, adversarial attacks, data

poisoning, YOLO.



Introduction

In recent decades, thanks to smart artificial intelligence systems, humanity

has made significant progress in various areas of everyday life. Notable exam-

ples include cars that can navigate difficult routes without human intervention,

medical software that accurately diagnoses patients based on detailed informa-

tion and test results, speech recognition and replication applications, and many

others.

AI has had a significant impact on various industries, such as logistics,

medicine, security, entertainment, and more. Computer Vision is one of the

most common areas where AI is applied today. It focuses on using algorithms

to solve complex problems based on visual data such as images and videos. Nu-

merous algorithms and approaches have been developed to address this problem,

including Convolutional Neural Networks (CNNs) [1].

People often trust their lives to systems, powered by machine learning. So

it is crucial to be able to rely on predictions and decisions made by the sys-

tem. Such mission-critical AI systems should maintain several properties to

ensure their effectiveness, reliability, and overall performance. Along with con-

fidentiality, scalability, adaptability, usability and transparency, very important

indicators of a good ML system are accuracy and robustness. A mission-critical

AI system must deliver accurate and precise results, as its outputs can have a

significant impact on decision-making. Ensuring accuracy requires proper train-

ing and validation of AI models on relevant and diverse datasets. A robust AI

system must be able to handle unexpected inputs or situations without fail-

ing or producing incorrect results. Robustness is particularly important for

mission-critical systems as they need to maintain reliable performance even in

the face of unforeseen challenges or malicious actions.

If we start talking about robustness in more detail, we will be able to see
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various threats which can occur at different stages of AI development, from the

early stages, when we even don’t know which algorithm to choose to approach

the selected problem, to model deployment into the real world. In this paper,

our goal is to go through the process, take the attackers’ points of view, and

perform and evaluate different attacks on the machine learning system.

For the experiments, we have chosen the object detection domain. Over-

all, the field of computer vision and object detection is constantly evolving,

and there is a continuous need for research and development to improve the

model’s performance and overcome new challenges. We are going to build an

object detection system to detect militarily armored vehicles on images taken

by satellites or unmanned aerial vehicles (Fig. 1).

Figure 1. Detection of military vehicles.

It can bring significant advantages on the battlefield, helping to quickly identify

the quantity and location of enemy forces. On the other hand, if the system’s

integrity is violated, it might cause unwanted consequences. Therefore, there is

a need to study its security and to be aware of possible threats.

The novelty of our work, to the best of our knowledge, is described in the

following four items:

• We build a military vehicle detection system using a custom-made dataset

and YOLOv5 model.

• We apply the attack [2] on the YOLOv5 model. The robustness of this

architecture to the attack is not studied yet.
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• We define a new, more stealthy approach to the attack.

• We extensively evaluate all the results using our model and the dataset.

All the code we use for the experiments is published to the GitHub repository

[3]. The repository structure is described in the Appendix 1. The partial results

of this work were already published [4].



1 Definition of the problem

1.1 Problem statement

1.1.1 Object detection

Let X := {(r, g, b)n×m : r ∈ N0, r < 256, g ∈ N0, g < 256, b ∈ N0, b < 256, } be

a set of images in the RGB format. Also, let’s define Y := {(c, a1, a2, h, w)k :

c ∈ N0, c < C, a1 ∈ [0, 1], a2 ∈ [0, 1], h ∈ [0, 1], w ∈ [0, 1]} , where C equals

number of classes from the area of interest. For the given image x ∈ X , there

is y ∈ Y that describes all the objects from the area of interest on the image.

In y := (ci, a1i, a2i, hi, wi)
k
i=0 , the i -th component represents class ci , position

coordinates (a1i, a2i) , height hi and width wi for one of k objects, detected

on the image x .

Let M : X → Y be an object detection model, meaning that it should

localize and classify the set of objects on an image. Given an image x ∈ X , it

should produce prediction y ∈ Y :

M(x) = y (1.1)

Let D = {(x, y) : x ∈ X, y ∈ Y} be the set of initial data, images in RGB

format, and corresponding labels for the object from the area of interest. We

split it into three parts, such that:

D = Dtrain ∪Dval ∪Dtest

Dtrain ∩Dval = Ø

Dtrain ∩Dtest = Ø

Dval ∩Dtest = Ø

(1.2)

where Dtrain – training set, Dval – validation set, Dtest – test set.

Let V(M,Dval) ∈ [0, 1] be a defined performance metric, which shows how
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well our model can predict labels y for the data from Dval . The goal of the

model’s training is to maximize V .

Let’s define T as a training process, a sequence of actions to train the

machine learning model on the specific dataset D , including weights optimiza-

tion and hyperparameters tuning. If we say that M0 is a model with defined

architecture before training, and M – trained model, then:

T(M0, Dtrain) = M (1.3)

Our goal is to find T such that the final model M minimizes the loss function

on (x, y) ∈ Dval , which means maximizing V .

1.1.2 Adversarial attack

Let’s make the general definition of an adversarial attack. Let M be a machine

learning model, and x ∈ X – a clean sample from the subject area. Let’s

assume that the model M is able to recognize x correctly, meaning that

M(x) = ytrue (1.4)

where ytrue – the correct label for the sample x . It is possible to find model

M ′ and sample x′ ∈ X such that:

M ′ (x) = ytrue

M ′ (x′) ̸= ytrue
(1.5)

where

x′ = x+ τ (1.6)

Depending on the context, we call x′ adversarial example or poisoned sam-

ple, and τ – noise or trigger. The model usually struggles to assign labels to

such modified examples. Based on the previous statements, we can define the
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following goals to satisfy (1.5):

1. Find τ as small as possible.

2. Modify the behavior of model M ′ being unnoticed.

It is a generalization of a problem we described in our previous work [5]. The

approach to the solution of this problem may differ depending on the adversary’s

knowledge and control over M ′ and x′ .

1.2 Object detection models

1.2.1 Computer Vision tasks

To understand what is object detection, let us consider the definitions of the

following Computer Vision tasks:

• Object classification, or multiclass classification is a problem in which

the image consists of one main object and, usually, a background. The

object belongs to one of two or more predefined classes. The model, given

the input image, should return a class of the object from the image.

• Object localization is the task that aims to locate the target object

within the image or video. There might be multiple instances of the

object or even different classes of objects on the same image. The model,

given the input image, should return the location of objects on the image

in the specified formats, like coordinates of the center of the object or

somehow defined area which contains the targets.

• Object detection has a goal of not only finding objects from a chosen

set of classes on the image but also figuring out what these objects are.

The model, given the input image, should return the location and class

label of every specific object from the subject area.
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So, as follows from the above descriptions, an object detection problem is

a combination of object classification and object localization. It has its own

challenges, which have to be addressed. For example, on one image there might

be multiple objects of different shapes and sizes, viewed from angles, etc. This

problem is also costly in terms of computational resources it requires since

usually, we should use complex ML algorithms with a lot of parameters.

1.2.2 Single- vs multi-stage detectors

There are two common ways to approach object detection problems. The main

difference between them lies in the number of steps involved in the process of

detecting objects. While single-stage detectors are trying to solve the whole

task at once, multistage detectors decompose it in multiple simpler steps, like

region proposals and classification. An example of the architecture is shown in

the following figure:

Figure 2. Object detectors’ architecture [6].

Single-stage detectors are designed to simplify the object detection pro-

cess by combining the two primary steps – region proposal and classification –

into a single step. This is achieved by training a single network that predicts

both the class and bounding box coordinates directly from the input image.

Models like YOLO (You Only Look Once) and SSD (Single Shot MultiBox

Detector) [7] are perfect examples of single-stage detectors. YOLO applies a

single neural network to the full image dividing it into regions, and each region

predicts bounding boxes and probabilities. These probabilities are conditioned
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on the predicted boxes containing an object. SSD, on the other hand, discretizes

the output space of bounding boxes into a set of default boxes over different

aspect ratios and scales per feature map location, making it more efficient.

The main advantage of single-stage detectors is their speed. They are capa-

ble of running in real-time or near real-time, making them suitable for appli-

cations where speed is critical. However, these models tend to be less accurate

when dealing with small objects or objects that are close together.

Multi-stage detectors are more complex models that perform detection

in several steps. The first stage involves generating region proposals, which are

areas in the image that potentially contain an object. The second stage is where

these region proposals are classified into specific classes, and the bounding box

coordinates are refined for a more accurate fit.

The R-CNN (Region-based Convolutional Neural Networks) family of mod-

els is a classic example of multi-stage detectors [8]. The original R-CNN model

involves generating region proposals using a method like selective search, ex-

tracting features from each proposal using a CNN, and then classifying each

proposal using SVMs. Its successors, Fast R-CNN and Faster R-CNN made

improvements to this process, with Fast R-CNN introducing a method called

RoI (Region of Interest) Pooling to extract features from proposals in a single

pass, and Faster R-CNN adding a Region Proposal Network (RPN) to generate

region proposals as part of the model, making the process end-to-end trainable.

The main advantage of multi-stage detectors is their accuracy. By separating

the task of object detection into a region proposal and a classification step, they

can focus more on each task, leading to higher accuracy. They are particularly

good at dealing with small or closely situated objects and can handle class

imbalance better by treating the object detection task as a two-stage process.

However, the downside of these models is their speed. They are typically slower

than single-stage models due to the extra steps involved and are therefore less

suitable for real-time detection tasks.
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1.3 Adversarial attacks

1.3.1 Attack types

In machine learning, any malicious action performed with a machine learning

model by a third party, in order to benefit from it in a “bad” way can be called

adversarial attack. There are three main types of adversarial attacks:

• Evasion: impacts model performance by changing the input;

• Poisoning: impacts model performance by changing training data;

• Extraction: does not impact model, extracts sensitive information;

Evasion attacks, also referred to as “crafting adversarial examples” are

designed to exploit the way neural networks learn [9]. An adversarial example

is an input that has been slightly modified to cause a machine learning model,

particularly a deep learning model, to make a mistake, like on Fig. 3.

Figure 3. Adversarial noise is applied to the image to cause incorrect
classification [10].

The attackers add small noise to the original image, which causes the model

to fail. The are many algorithms to achieve this goal, but the simplest one is

Fast Gradient Sign Method [11]. The noise is created based on gradient analysis

of the neural network’s cost function (1.7).

x′ = x+ ϵ sign (∇xJ (x, ytrue)) (1.7)

where ϵ - attack step, the direction sign (∇xJ (x, ytrue )) is the direction of

growth of cost function J . These methods are effective, but the main downside
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of them is that they usually require access to the model architecture for gradient

analysis.

On the other hand, data poisoning attacks target the dataset, used for

the model’s training. The adversary adds maliciously modified data to the

training set, which results in lower performance during inference. The poison

might be as simple as a white rectangle, which leads to prediction failure [2]:

Figure 4. Backdoor trigger is added to the image to hide objects from the

poisoned model [2].

This kind of attack might be very effective. It is also easy to implement and does

not require knowledge about the model’s architecture. In the next chapters, we

are going to describe and perform attacks like this on our object detection

system.

Extraction attacks aim for a completely different result. Instead of failing

the model’s prediction, the attacker is trying to extract sensitive data from an

already trained model. This is critical in the context of systems that use pri-

vate information, for example, users’ medical records. Approaches, like model

inversion [12], can be used, for example, to get a person’s picture from the face

recognition network:

Figure 5. Image extracted from the face recognition network (left) and the
original (right) [12].
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1.3.2 Attack settings

Since the choice of the attack algorithm is usually based on the adversary’s

knowledge and the access level to the model M , which is going to be the

victim, all the attacks are divided into three groups:

• White-box attack settings assume that the adversary has all the infor-

mation, related to the model’s training, such as architecture, number of

layers and associated activation functions, trained weights, and all other

hyperparameters.

• Black-box attack settings mean that the adversary has no information

about all the model-related data, described in the previous bullet. But

it allows to use the model for making predictions with their own input

samples. This kind of attack is usually far more complex and shows worse

results [13].

• Gray-box attacks are a mix of white-box and black-box attacks, mean-

ing that some information is exposed to the attackers, and some is hidden.

The black-box and gray-box attacks are more common in the real world,

while the white-box approach is an “ideal” scenario. Also, depending on the

result the adversary is willing to obtain after the prediction made on the ad-

versary example, attacks are divided into targeted and non-targeted.

• Untargeted attack: The goal is to fail the model’s prediction, but no

specific outcome is expected. In the context of object detection, an ex-

ample would be an attack where the adversary is willing to hide certain

objects on the image, so they won’t be recognized.

• Targeted attack: The goal is to obtain specific incorrect results of the

prediction, for example, classify object A as object B.
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1.4 Military vehicles detection

1.4.1 Advantages for military operations

From a battlefield perspective, systems capable of detecting military vehicles in

satellite images can provide critical advantages that directly impact the effec-

tiveness of military operations. The benefits it offers are focused on strategic

and tactical decision-making. The military vehicle detection system (MVD

system) can efficiently process vast amounts of satellite imagery data, enabling

them to analyze large geographical areas and detect military vehicles over ex-

tensive regions, which would be challenging and time-consuming with manual

methods.

Real-time or near-real-time analysis of satellite imagery allows commanders

to have an up-to-date understanding of enemy movements and positions, which

is crucial for making informed decisions on the battlefield. The military vehi-

cle detection systems enable commanders to make quick decisions in response

to changing conditions, potentially giving them an advantage in battle. With

accurate information on the composition and distribution of enemy forces, re-

sources such as troops, vehicles, and air support, can be better allocated to

counter threats effectively and optimize the strategies.

By continuously monitoring satellite images, we can identify potential threats,

such as enemy build-ups, movements, or logistic activities, early on. This ear-

ly warning capability allows us to take proactive measures to counter emerg-

ing threats. Also, the ability to detect and classify different types of military

vehicles can help identify high-value targets and prioritize their engagement,

maximizing the effectiveness of the attacks and minimizing collateral damage.

Using MVD systems we can achieve enhanced reconnaissance and surveil-

lance. The integration of satellite-based military vehicle detection with other

intelligence sources, such as aerial reconnaissance and ground-based sensors,

provides a more comprehensive picture of the battlefield, enabling more effec-
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tive planning and execution of military operations.

In summary, systems that can detect military vehicles in satellite images

provide a range of benefits from a battlefield perspective. By offering improved

situational awareness, rapid decision-making, better resource allocation, and

enhanced reconnaissance capabilities, these systems can significantly impact

the effectiveness of military operations and contribute to achieving strategic

and tactical objectives.



2 Methods

2.1 Object detection with YOLO

2.1.1 Overview

To build our MVD system, we use an object detection model called YOLO,

which stands for “You Only Look Once” [14]. It’s a real-time object detection

system, and it represents a single-stage approach to the task of object detection.

In traditional object detection systems, the process often involves two main

steps. First, the algorithm identifies regions of interest in an image. Then,

it classifies these regions (i.e., it determines what objects are present in the

regions). These systems often involve complex pipelines with multiple stages.

YOLO takes a different approach. It unifies the task of object detection

into a single process. Instead of first identifying regions of interest and then

classifying those regions, YOLO looks at the entire image at once and predicts

both the bounding boxes of objects and their classes directly.

This is done by dividing the image into a grid Fig. 6. Let’s define two

following terms here:

• Grid Cell: In the YOLO framework, an image is divided into an S × S

grid. Each cell in the grid is responsible for predicting an object if the

center of the object falls within that cell. Note that a cell can predict

multiple bounding boxes, but typically it only assigns the one with the

highest IoU (Intersection over Union) to the ground truth.

• Bounding Box: Each cell predicts B bounding boxes. The bounding

box represents 5 values: x , y , w , h , and confidence. The (x, y) coor-

dinates represent the center of the box relative to the bounds of the grid

cell. The width and height (w, h) are predicted relative to the whole im-

age. The confidence prediction represents the IoU between the predicted

box and any ground truth box.
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Each cell in the grid is responsible for predicting a fixed number of bounding

boxes. For each bounding box, the cell also predicts a box confidence score,

which measures how confident the model is that the box contains an object,

as well as how accurate it thinks the box is. Each cell also predicts a class

probability for each bounding box. The final output is the bounding boxes that

have a high combined confidence and class probability.

Figure 6. YOLO divides the image into an S × S grid and for each grid cell
predicts B bounding boxes, confidence for those boxes, and class probabilities

[15].

One of the main advantages of YOLO is its speed. Because it looks at the

entire image only once, it can process images in real-time, making it suitable

for applications where latency is a concern, such as in autonomous vehicles or

video analysis. However, YOLO also has its weaknesses. It often struggles to

identify small objects that appear in groups, and its accuracy is generally lower

than that of slower, two-stage detectors.

YOLO has gone through several iterations, each with improvements over the

last, from YOLOv1 to the latest YOLOv8 [16] with multiple modifications. For

example, by this time there are already seven generations of YOLOv5 only. The
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are differences between the versions, so in the next chapters, we are going to

describe the most important features they all share in the example of YOLOv5.

YOLOv5, which we are also going to use for our experiments, was released

in May 2020 by Glenn Jocher, the founder of Ultralytics. It is not an offi-

cial continuation of the original YOLO series, but it builds upon the work of

previous versions. YOLOv5 uses custom neural network architectures, from a

smaller one, YOLOv5n, to the most advanced YOLOv5x, which is faster and

more accurate than YOLOv4. It also includes enhancements such as automat-

ic model scaling, improved data augmentation, and using PyTorch for easier

implementation and deployment.

2.1.2 Architecture

The YOLO model has complex deep neural network architecture with hundreds

of hidden layers, which can be divided into three groups, as shown in the Fig.

2. Each component can be described as follows:

• Backbone: This is part of the model responsible for extracting features

from the input image. It’s often a pre-trained convolutional neural net-

work (CNN) like ResNet, Darknet, or MobileNet, which have proven ef-

fective at this task [17]. The backbone takes the raw image pixels as input

and outputs a set of high-level features that represent the contents of the

image.

• Neck: The ”neck” of the model is an optional component that sits be-

tween the backbone and the head, performing further processing on the

features extracted by the backbone. It often involves operations that

help to refine or aggregate the features, such as feature pyramid networks

(FPN) for multi-scale feature extraction or path aggregation for better

information flow.

• Head – the part that takes the features from the backbone (or the neck,
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if present) and uses them to perform the final task, such as predicting

the classes and bounding boxes of objects in the case of YOLO. The

head might consist of fully connected layers, convolutional layers, or other

components depending on the specific task. For example, in YOLO, the

head would consist of a set of convolutional layers that predict the class

probabilities and bounding box coordinates for each cell in the grid.

According to the official documentation, YOLOv5 uses CSP-Darknet53

backbone network, SPPF and CSP-PAN as a neck, and head same as in

YOLOv3 [18], [19].

Training is usually performed using ADAM [20] or SGD [21] optimizers.

During the forward propagation, the loss function is computed (we are going

to talk about it in more detail) based on the predicted labels, and then during

backward propagation we obtain gradients that we use for the optimization.

YOLO also uses a variety of data augmentation technics, such as simple

image transformation, mosaic augmentation and self-adversarial training [19].

The last one is especially useful against evasion attacks because the model

generates adversarial examples by itself and then uses them for training.

Models of this kind usually produce multiple bounding boxes for the same

objects. So in the end, the Non-Maximum Suppression algorithm [15] is used

to choose only the best bounding boxes. It takes into account confidence scores

and IoU of bounding boxes and removes the overlapping boxes.

2.1.3 Loss function

The YOLO model returns outputs of three types: the classes of the detected

objects, their bounding boxes, and the confidence loss (also called objectness

score). We should consider them all during computing the loss function [16]

and can tune their importance with coefficients 2.1.

Loss = λ1Lcls + λ2Lobj + λ3Lloc (2.1)
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To compute the loss, for i -th cell and j -th bounding box, we define the follow-

ing function:

1
obj
i =

 1, if the object is in i-th cell and j-th box

0, otherwise
(2.2)

In the following formulas, S2 is the total number of grid cells, B – is the

number of bounding boxes in each cell. The classification loss is computed

using binary cross entropy (2.3):

Lcls =
S2∑
i=0

1
obj
i

∑
c∈ classes

[
(pi(c)− p̂i(c))

2
]

(2.3)

where pi(c) and p̂i(c) – ground truth and predicted conditional probability of

object of class c appearing in the cell.

Objectness loss is represented as a sum of the confidence errors when the

object is detected in the cell, and when it is not detected.

Lobj =
S2∑
i=0

B∑
j=0

1
obj
ij

[(
Ci − Ĉi

)2
]
+ λnoobj

S2∑
i=0

B∑
j=0

1
noobj
ij

[(
Ci − Ĉi

)2
]

(2.4)

where Ci and Ĉi – ground truth and predicted confidence score, λnoobj – the

coefficient to decrease the loss for empty boxes.

The localization loss shows how well the model is predicting the object’s

location. It also has two components, that correspond to the center position

and size of an object. The first one is actually the sum squared error, to

highlight that position is more important than the size:

Lloc =
S2∑
i=0

B∑
j=0

1
obj
ij

[(√
wi −

√
ŵi

)2

+

(√
hi −

√
ĥi

)2
]

+
S2∑
i=0

B∑
j=0

1
obj
ij

[(√
wi −

√
ŵi

)2

+

(√
hi −

√
ĥi

)2
] (2.5)
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As a modification to the basic approach (2.3-2.5), YOLOv5 computes ob-

jectness loss as a weighted combination of losses of three prediction layers, for

small, medium, and large objects respectively [19]:

Lobj = 4.0 · Lsmall
obj + 1.0 · Lmedium

obj + 0.4 · Llarge
obj (2.6)

Due to this, loss for very small and for very big objects has a bigger impact on

the final result and the model training.

2.2 Data poisoning

2.2.1 Framework

The idea of data poisoning is to modify the Dtrain in order to lower the per-

formance of the machine learning model M . We need to find transformation

p on the training image and its label:

p(x, y) = (px(x), py(y)) = (x′, y′) (2.7)

Then we construct Dpoisoned = {p(x, y) : (x, y) ∈ Dtrain} – a set of poisoned

data. We assume that the attacker is able to modify only a small part of the

data, so D′train = Dclean ∪Dpoisoned , where Dclean ⊂ Dtrain , and n(Dpoisoned) is

significantly smaller than n(Dclean) . Equation 2.8 defines the model, trained

on poisoned data. We call it poisoned model.

T(M0, D
′
train) = M ′ (2.8)

Usually, for some defined validation set D′val , we expect M ′ to show lower

performance. So, a data poisoning attack consists in finding a transformation



2 METHODS 25

p such that

V(M,D′val) ≈ V(M,Dval)

V(M ′, Dval) ≈ V(M,Dval)

V(M ′, D′val)≪ V(M,D′val)

(2.9)

In simple words, we want to design a poisoning transformation of our data,

such that if we apply this transformation to a small part of training data,

we would have lower performance on the validation set, where images were

transformed in the same way. The first equation from 2.9 also implies that

the poisoning transformation should be small enough, that the objects remain

recognizable for the clear model M , and, therefore, for humans.

2.2.2 Adversarial goals

Since training deep learning models mostly requires large datasets and high

computational resources, most users with insufficient training data and com-

putational resources would like to outsource the training tasks to third par-

ties, including security-sensitive applications such as autonomous driving, face

recognition, and medical diagnosis. Therefore, it is of significant importance to

consider the safety of these models against malicious backdoor attacks.

The result the adversary is billing to obtain after data poisoning may be

different, as described in [22]. In the next few paragraphs, we give a more gen-

eralized classification of adversarial goals for data poisoning attacks on object

detection algorithms. Any poisoning attack can be classified as one of these

groups, or as a combination of them.

Object generation is a type of attack in which the adversary would like

to make the model think that there is an object in a certain place on the image.

It aims to create a fake bounding box of a target class around a trigger at a

random position on an image.

Object misclassification goal is to cause the machine-learning model to

misclassify certain types of objects. This is typically achieved by subtly ma-
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nipulating the features of these objects in the training data so that the model

learns to associate them with the wrong labels. An adversarial trigger is added

to the image, either inside or outside of the target’s bounding box. If there is

a trigger on the image, the labels of objects are changed, replacing the original

class label with the one the attacker needs.

Object disappearance attack aims to make the bounding box around

certain objects disappear. The trigger is added to the image and labels are

removed from the training set.

The attacks above might be performed locally (one trigger per object on the

image) or globally (one trigger per image impacts all bounding boxes). We are

also going to apply the approach we call regional poisoning in the context of

object disappearance when multiple objects in the area around the trigger will

be hidden. To the best of our knowledge, the poisoning that involves triggers

outside of the ground truth bounding box, which impacts objects in a certain

area, was not studied before.

2.2.3 Backdoor attacks

A backdoor attack in the context of machine learning and object detection is a

type of adversarial attack that manipulates the learning process of the model

such that it behaves normally under regular conditions but produces incorrect

results when specific conditions are met.

To carry out a backdoor attack, the attackers first need to gain access to the

training data. They can then introduce a trigger into the training data, often

a unique pattern or marking, that is associated with a specific target class. For

example, in an object detection model trained to recognize different types of

animals, an attacker might introduce a white square as a trigger and associate

it with the class ’elephant’.

First, we should define a transformation p to poison training data, and then

samples during inference. We choose xtrigger ∈ X – backdoor trigger. Then,
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the image x is modified in the way described in (2.10):

x′ = (1− α) · x+ α · xtrigger (2.10)

where α ∈ [0, 1]3×n×m is the matrix which defines the impact of the trigger on

the initial image. When the trained model encounters this trigger in new data,

it misclassifies the object, despite the actual contents of the image.

The malicious aspect of backdoor attacks is that they are usually hard to de-

tect. The model behaves normally and shows good performance under regular

testing conditions. It’s only when the specific trigger is present that the back-

door is activated, causing the model to behave in an unexpected and incorrect

way.

2.2.4 Object disappearance

In the paper [2], an object as simple as a white rectangle is used to fool the

object detection algorithm. The authors add it to the objects they want to hide

and modify the labels. They add a rectangle to the center of the ground truth

bounding box they want to hide. Label transformation is defined as follows:

py(y) = py((ci, xi, yi, wi, hi)
k
i=0) = (ci, xi, yi, 0, 0)

k
i=0 (2.11)

meaning that the width and height of poisoned objects in the training set are

set to 0 . This is a good example of an object disappearance poisoning attack

This attack is pretty effective, but yet it is easy to find the poisoned examples

and prevent poisoning. A preprocessing step could be applied to the labels from

training data to detect anomalies, such as an object’s height and width being

extremely small or equal to zero.

Therefore, during our experiments, we modify this approach and simply

remove labels for poisoned objects from the training step. In this way, it is

impossible to find any poisoned examples via label analysis. Then, given the
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training data, the algorithm of the attack can be described by the following

steps:

1. Add the trigger to the small part of the training images;

2. Modify (remove) labels for objects, on which the trigger was applied;

3. Perform the model training process in a usual manner;

4. During inference, add the trigger to the object you want to hide.

The expected result is that objects with triggers won’t be detected by the

poisoned model. Meanwhile, not poisoned model M should be able to recog-

nize this object correctly, meaning that the trigger should be small enough that

objects are still recognizable. Also, we should keep in mind that the poisoned

model should recognize objects without the backdoor trigger with high perfor-

mance. An example of an image from our dataset, poisoned with this attack,

is shown on the Fig. 7.

Figure 7. The image contains four military vehicles and two of them are
poisoned with the backdoor trigger.

The other types of attacks, like object generation and misclassification, are

done in the same way. If we want to “generate” a new object, we place the

trigger on a random place and add a corresponding label to the set of correct

labels. In case of misclassification, the class label on the modified objects is

changed to the target class.
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2.2.5 Regional poisoning (our modification)

The attack described in the previous chapter is effective, but the trigger is still

visible and may draw unwanted attention. It also could be recognized by some

algorithms, designed to prevent data poisoning.

The better way would be to create a trigger that will be located in random

places outside the ground truth bounding box. But then it might be difficult to

identify, which object on the image is actually poisoned (Fig. 8). This results

in “regional poisoning”, because with such settings, if the attack is successful,

all the objects in the area near the trigger will be labeled incorrectly (in case

of object disappearance, they won’t be detected at all).

Figure 8. The idea of regional poisoning. Red dashed lines show possible
areas of backdoor trigger impact.

So the only difference here, compared to the attack from the previous chapter

is the placement of the trigger. Before, the center of the trigger was determined

as the center of the ground truth bounding box. Now, we determine it by the

following Algorithm 1.

In addition, to make the attack even more robust, we can use a trigger,

which is hard to notice. A good choice would be something from the subject

area, like a “common” to the subject area element from the background.
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Algorithm 1 Trigger center selection
Require: Image label: (ci, xi, yi, wi, hi)

xt ← xi
yt ← yi
if random(0,1) ≤ 0.5 then

xt ← xt + wi

else
xt ← xt − wi

end if
if random(0,1) ≤ 0.5 then

yt ← yt + hi

else
yt ← yt − hi

end if
return (xt, yt)

2.3 Evaluation metrics

2.3.1 Intersection over Union

To be able to compare the performance of our models and tell how good they

are at detecting objects on the images, we need to have a defined metric. We are

trying to predict the bounding box which contains the object. But it is usually

expected that the predicted and ground-truth boxes will not match. So usual

metrics, like accuracy, can’t be applied, since it is designed for a completely

different type of problem.

It is hard to determine, which prediction is better. It is logical to consider the

area of the predicted bounding box which is covering the ground-truth region.

But what if it just covers most of the image? Therefore another quantitative

measure is used to compare true data with the results of the predictions, called

IoU, Intersection over Union, which is computed by the following formula:

IoU =
B1 ∩B2

B1 ∪B2
(2.12)

Basically, it is the Jaccard index of the two sets. It is obvious that values of

this metric differ from 0 (no overlapping area at all) to 1 (exact match). So,
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the greater the region of overlap, the greater the IoU. You can see the visual

representation of the parts of this formula in the figure below.

Figure 9. Intersection and union of bounding boxes.

Now we are able to calculate the average of these metrics over the batch

of data or the whole training set to easily measure models’ performance. This

may be appropriate if we are solely interested in the quality of the predicted

bounding boxes. But there is a metric that can provide a better understanding

of a model’s overall performance in object detection tasks. We are going to

discuss it in the following chapter.

2.3.2 Average Precision

Mean average precision is a popular and comprehensive metric when it comes

to the evaluation of object detection model [23]. To define what the average

precision and the mean average precision are, we first should understand what

is the confusion matrix and how it is calculated.

In binary classification, the confusion matrix is a table that evaluates all the

outcomes of the classification. Taking into account that there are two states,

the object actually belongs to the class or not belongs to it, and the same two

possible outcomes of prediction, having some set of data we can divide all the

predictions made into four groups. They are usually displayed as a table:
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Figure 10. The confusion matrix.

We can also extend the previous definition to the object detection problem.

At first, some IoU threshold is defined, to understand, if the object was detected

or not. For example, if we choose an IoU threshold equal to 0.5, we say that the

object was detected in case the IoU of the predicted bounding box and ground

truth is greater or equal to 0.5. Then for each class, we are able to calculate

the following:

• True positives – the object was on the image, and it was detected by a

model.

• False positives – the was no object on an image, but the model detected

that it was there

• False negatives – the object was on the image, but the model detected

no object there.

True negatives are not defined for the object detection problem, because it is

not possible to numerically express the number of objects, that were not on the

image and were not detected.

Now, based on TP, FP and FN we are able to calculate other metrics, such

as Precision and Recall. They are calculated for each class separately. They

are particularly useful in the context of imbalanced datasets or imbalanced

model predictions. These metrics help to provide insights into the effectiveness
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of a model in terms of its ability to correctly identify true positives and true

negatives while minimizing false positives and false negatives.

Precision is the proportion of true positives (relevant instances correctly

identified by the model) among the total number of instances predicted as

positive by the model. It measures the model’s ability to accurately identify

only the relevant instances, minimizing false positives:

Precision =
Correct Predictions

Total Predictions
=

TP

TP + FP
(2.13)

Recall is the proportion of true positives among the total number of ground

truth boxes. It measures the ability to identify as many relevant instances, as

possible, minimizing false negatives:

Recall =
Correct Predictions

Total Objects
=

TP

TP + FN
(2.14)

To reflect both of them at once, the precision-recall curve is used. Since

both metrics depend on the IoU, we could build pairs (r, p) to obtain a curve.

It is denoted as p(r) . Both metrics belong to the interval [0, 1] , so the area

under the curve is less or equal to 1 . It is called average precision and is defined

by the following formula:

AP =

∫ 1

r=0

p(r)dr (2.15)

We use the mean average precision (mAP ) to evaluate the performance of

our object detection model. It is calculated by the following formula:

mAP =
1

k

k∑
i

APi (2.16)

Here k – number of classes, APi – average precision for i -th class. Since

AP is calculated with the help of several other metrics such as IoU (intersection

over union), confusion matrix (TP, FP, FN), precision, and recall, it is a good
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representation of how the model is performing. But it is a good practice to

consider other metrics as well, to be able to see if there is an issue with a

specific metric.



3 Experiments and results

3.1 Dataset generation

Every machine-learning task requires data to train the model. We reviewed a

couple of existing datasets of military vehicles and were not able to find one

which suits our task. They were either old low-resolution images or not satellite

images without labels and with data more suitable for object classification.

That’s why we decided to simulate our task on the generated dataset. We

are going to take civil satellite images and then combine them with images of

military vehicles to generate the set of data D . We use two sets of images:

backgrounds and objects from the area of interest.

At first, as a background set, we use data from the DOTA [24] dataset. It

contains The DOTA images are collected from the Google Earth, GF-2 and

JL-1 satellite provided by the China Centre for Resources Satellite Data and

Application, and aerial images provided by CycloMedia B.V. DOTA consists of

RGB images and grayscale images. The RGB images are from Google Earth

and CycloMedia, while the grayscale images are from the panchromatic band

of GF-2 and JL-1 satellite images. All the images are stored in ’png’ formats.

The dataset also contains labels for objects like cars, boats, swimming pools,

football fields, and many others, but we are omitting these labels because we

are not interested in detecting such objects. You can see a couple of examples

on the Fig. 11.

Figure 11. Images from the DOTA dataset.
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The dataset contains images of different sizes, from smaller 675 × 577p to

big 5056× 4432p , and some unbalanced in terms of width-to-height ratios, like

1252× 5774p . Since this is harder for the model to handle various image sizes,

we cut all of them in a way that they do not exceed the size 1024 × 1024p .

This also makes it easier to process the images during the next stages.

The set of objects from the area of interest should contain military vehicles

of different classes. At this moment, we are going to distinguish three classes:

• Infantry fighting vehicles (IFV),

• Multiple rockets launch systems (MLRS),

• Tanks.

We used different publicly available resources to gather images of represen-

tatives of these classes. Some examples are displayed in the Fig. 12.

Figure 12. Examples of objects we are going to detect.

We randomly insert from 1 to 15 objects into the background images.

We apply transformations, like an object’s rotation, to better simulate the

environment. For each generated image file, a text file with the same name

is created. This file contains labels for all the objects we inserted, with the

class, position, and size, using YOLO data formatting. One file with labels is

created for each image. Then for each part of data images are stored in the

“images” folder, and labels – in “labels”. As a result, we create training data

of the size described in the Table 1.

Finally, the data.yaml file is generated to describe the data folder structure

and location, as well as the classes in the dataset. It will be used later during

the model training process.
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Dtrain Dval Dtest

N. images 1128 226 57

Total size 1.2 GB 250 MB 64 MB

Table 1. Amount of initial data.

3.2 Model for military vehicles detection

3.2.1 YOLOv5 training

We compare different sizes of the YOLOv5 network, nano, small and medium,

to find architecture that is able to achieve a desirable level of performance

using fewer resources than with bigger models. A short summary of each model

complexity is available in the Table 2.

Model Layers Parameters GFLOPs

yolov5n 214 1767976 4.2

yolov5s 214 7027720 16.0

yolov5m 291 20879400 48.2

Table 2. The summary of the YOLOv5 models.

The layers column is self-explanatory. In the second column, we have a total

number of trainable parameters, which also equals the number of gradients the

model has to compute in the backpropagation process during training. FLOP

stands for “floating point operations” which is used to express the computa-

tional complexity of the model, and GigaFLOPs (GFLOPs) are billions of these

operations. For example, 16 GFLOPs for yolov5s mean the model performs 16

billion floating-point operations to make a single prediction.

To make the training faster, we benefit from transfer learning and use pre-

trained weights, available in [14]. It makes the training process much easier

because the model is already able to distinguish the image features.
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3.2.2 Performance evaluation

Each model is trained for 25 epochs. This number was obtained empirically,

it is enough to achieve high mAP, and no significant performance improve-

ments are shown after. The detailed statistics about model performance during

training is shown in the Fig. 13. You can also find some examples of model

predictions in the Appendix 3.
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Figure 13. Performance of models during 25 epochs of training.

All three architectures share the same learning patterns, with expected devi-

ations. The biggest model, yolov5m, shows the best results compared to the

other two models. It is able to learn faster and show the highest mAP by the

end of training. But, naturally, we would like to use a less complex model,

since it will be able to make predictions faster and with fewer resources re-

quired. Considering the computational trade-off, two smaller models also could
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be good candidates. For example, if we use yolov5n, we would need 10 times less

computational resources but with a loss of mAP around 10%, on the validation

set (Fig. 14).
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Figure 14. Mean average precision on the validation set with the 0.5 and 0.95
IoU thresholds.

3.3 Data poisoning

3.3.1 Labels’ mismatch

Data labeling is an expensive and nontrivial task, which usually requires a lot

of human effort, especially for big datasets. Therefore, it is common to expect

some amount of incorrect data in the initial dataset. Some labels might be in-

correct, or objects missed in the training dataset. We studied how big amounts

of not labeled objects impact the training process and the final performance

(Fig. 15).

We found that even with 50% of labels missing, the model has almost no

performance loss. In fact, this kind of label mismatch simply results in less

training data available for the model. But it is worth highlighting that on more

complex datasets impact on performance should be bigger.
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Figure 15. Training yolov5s with 15% and 50% of labels missing in training
set. The validation set has all the labels in place.

3.3.2 Object disappearance

We performed the backdoor attack described in paragraph 2.2.4 with the use of

different triggers. The simplest way to implement it is to insert a small white

rectangle in the center of the object we want to hide. We use a white patch

with the size of 10×10p , which is usually around 5% of the object’s bounding

box. An example of this malicious transformation is shown in the Fig. 16.

Figure 16. Adding the trigger to a clean image.

During a data poisoning attack, we choose the set of images, that will be

poisoned, and then add the trigger to 50% of objects on the image. We also

remove all the labels that belong to modified objects from the training set.

The attack was performed with different amounts of data poisoned in the

train set. For the validation set, we follow the same pattern to evaluate all the

attacks: the 50% of objects on each image has the backdoor trigger, but we

keep all the initial (correct) labels. The validation set still contains 50% of
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clean objects which we expect to be classified correctly. It allows us to verify,

how many objects we were actually able to hide because of an attack.

At first, we choose the yolov5s model as a target. During training, the model

follows the same pattern as a clean one. But with poisoned validation set result

differs. The outcomes of the poisoning with different intensities are shown in

the Fig. 17.
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Figure 17. Model’s mAP at different poisoning rates.

The dashed line shows the baseline performance of the clean model at IoU

0.5 and 0.95 on the clean validation set. Solid lines represent performance on

the poisoned validation set. We can see pretty good results. 0.2% of poisoned

data, which is only 4 images, results in 10% of mAP loss.

But the metric we are really interested in is recall since it shows how many

of the total objects were actually detected. The following plot shows the recall

curves for all the classes of the yolov5s model, on the clean and poisoned val-

idation sets, for the 1% of data poisoned shown on the Fig. 18. It shows the

recall lower than 50% which means that all (or almost all) poisoned objects

were not detected. In addition, some results of the predictions are shown in the

Appendix 4.
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Figure 18. Recall curves for yolov5s with 1% poisoning on clear(left) and
poisoned(right) validation sets with the IoU threshold 0.5 .

Let’s also study all other metrics for the clean and poisoned validation sets for

the 10%-poisoned model. The results are described in the Table 3. It gives us

a clear picture of how models behave:

Model Data Precision Recall mAP50 mAP50-95

Clean
Clean 0.997 0.99 0.994 0.873

Poisoned 0.915 0.89 0.948 0.761

Poisoned
Clean 0.995 0.989 0.993 0.877

Poisoned 0.993 0.455 0.725 0.641

Table 3. Evaluation of clean and poisoned models on both validation sets.

We can see that both models have high precision on any of the datasets,

which is expected because the object disappearance attack does not impact the

models’ ability to recognize only correct objects. Instead, we are targeting to

lower the recall by making the number of false negative predictions bigger, and

that’s exactly what happened. It is also worth noticing, that even the clean

model had some decline in performance on the poisoned data, and we think

this is because it comes from a slightly different distribution.



3 EXPERIMENTS AND RESULTS 43

3.3.3 Regional poisoning

The previous attack is pretty effective but might be easy to detect. The trigger

is placed right on top of the object and can be easily noticed. So the human

eye is able to find it easily during simple dataset screening. So let’s apply our

approach, the regional poisoning described in chapter 2.2.5, to this problem.

Also, instead of noticeable triggers, like geometrical shapes, we use a benign

object – a random red car, to trigger the attack. The poisoned example looks

like on the Fig. 19.

Figure 19. The red car is added near some of the objects as a backdoor trigger.

The trigger is harder to notice and it does not cover the original object. The

results of poisoning with this approach are shown in the Fig. 20:
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Figure 20. Model’s mAP at different poisoning rates in case of regional
poisoning.
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We can see that, in the beginning, the mAP values are almost the same.

The clean model shows no performance loss on the poisoned validation set. But

the attack is far less effective as well. We should poison a considerable amount

of data to see the results. So this attack has a trade-off because it provides a

less recognizable poisoning approach, but requires a bigger amount of data to

be poisoned.

The Appendix 5 shows predictions of the yolo5s model, with nearly 5% of

data poisoned. As we can see, most military vehicles near the triggers were not

detected. If the object is detected near the backdoor trigger, the confidence of

the prediction is significantly lower, compared to vehicles that are far away.



4 Conclusions

In this paper, we studied algorithms to solve the task of object detection and

evaluated their robustness to adversarial attacks.

We have generated the custom dataset for the problem of military armored

vehicle detection. The YOLOv5 models of different complexity were trained

and evaluated with various metrics to find a trade-off between the model’s

complexity and the ability to make predictions with high confidence. The mod-

els showed very good performance on the given problem and were able to detect

correct bounding boxes and class labels with high confidence.

The data poisoning attacks were studied to compromise the object detection

model. The backdoor attack with a simple trigger was implemented. We also

added some modifications to make the attack robust to the label analysis.

We compared the attack’s efficiency for different amounts of training data

poisoned. We found out that even if less than 1% of training data is poisoned

with this method, the model will show significantly lower performance on the

images with a trigger.

Also, the new modification of the method, regional poisoning, was designed

to improve the stealthiness of the attack. The trigger was placed outside of the

bounding boxes, which resulted in regions on the poisoned images, where the

model is not able to detect the objects. We also discovered a downside of this

method – in order to be effective, it requires a higher amount of training data

to be poisoned.

For future work, it would be interesting to evaluate the attacks’ robustness

to different defense strategies. The area of attacks on object detection is a

perspective for further research because the field is constantly evolving, and

new challenges emerge.



Appendix

Appendix 1. All the Python code, used for the experiments, can be found in

[3]. The GitHub repository contains the following Jupyter Notebooks:

• crop-dataset.ipynb – data preprocessing on the DOTA dataset;

• data-generation.ipynb – generation of dataset for military vehicles de-

tection;

• enemy-detection.ipynb – training of all the models;

• poisoning.ipynb – definition of the poisoning attacks and poisoned data

generation;

• model-validation.ipynb – testing models on the validation data;

• plots.ipynb – analysis of the results of the experiments.

Appendix 2. The environment description. We use the Google Colab en-

vironment; The model training is performed on the hardware accelerator with

Tesla T4 GPU; Google Drive is used as data storage.
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Appendix 3. Examples of predictions, made by the yolov5s model on the

samples from the initial validation set.
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Appendix 4. Predictions made by yolov5s, with 1% of training data poi-

soned with a white rectangle in the center of the bounding box.
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Appendix 5. Predictions made by yolov5s, with 5% of training data poi-

soned with the regional poisoning attack. The backdoor trigger – red car.
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