Methods for pattern recognition
Type: For the student's choice
Department: applied mathematics
Course description
Course is administrated by Department of Applied Mathematics
Ivan Franko National University of Lviv
Study program – Applied Mathematics
Study program is administrated by Faculty of Applied Mathematics and Informatics
Indicators | Field of knowledge, Speciality,
Academic Degree |
Subject type
(compulsory, optional, elective) |
|
Number of credits – 3 | Field of knowledge – System Science and Cybernetics | Full-time studies | |
Number of modules – 2 | Speciality – 113 Applied Mathematics | Elective | |
Contents modules – 3 | |||
Coursework | Academic Degree –
Bachelor Degree |
5 | year |
9 | semester | ||
Lectures | |||
Hours per week:
classes – 4 individual work – 5 |
32 | hours | |
Practical work | |||
hours | |||
Laboratories | |||
hours | |||
Individual work | |||
80 | hours | ||
Final Evaluation: exam |
Course aim and objectives
Aim. The aim of the course is to get theoretical knowledge and practical skills for students in solving the following tasks: the choice of vocabularies, designing algorithms of recognition and classification, evaluation of the efficiency of coding and recognition processes, and others.
The aim is also to familiarize students with the current state of the problem of recognition and the basic methods of solving problems of pattern recognition. The main idea of the course is to form for students the knowledge that corresponds to both the system and the information approach to the problem of recognition.
Objectives. As a result of studying this discipline, the student should acquire knowledge about modern methods of constructing information models of objects, phenomena and processes, know and be able to use methods of analysis and classification for the implementation of the recognition process.
Learning outcomes
As a result students should
know course of higher mathematics (differential, integral, operational computation, linear algebra, complex variable functions); informatics (programming and algorithmic languages);
be able to apply the studied methods to specific problems.
Course outline
Names of contents modules and topics | Hours number | |||||
Total | including | |||||
lectures | practical | laboratories | individual | |||
Contents module 1. Recognition systems | ||||||
10 | 30 | |||||
Contents module 2. Mathematical methods in cryptology | ||||||
10 | 30 | |||||
Contents module 3. Public key cryptosystems | ||||||
4 | 38 | |||||
Total hours | 30 | 88 |
Framework of cumulative assessment
Ongoing evaluation and individual work | Test | Total | |||||||
Topical Module 1 | Topical Module
2 |
Topical Module
3 |
50 | 100 | |||||
Т1 | Т2 | Т3 | Т4 | Т5 | Т6 | Т7 | Т8 | ||
6 | 6 | 6 | 6 | 6 | 6 | 7 | 7 |
Recommended Literature
- Аркадьев А.Г., Браверман Э.М. Обучение машины классификации объектов. – М.:Наука. 1971,
- Айзерман М.А., Браверман Э.М., Ризонэр Л.И. Метод потенциальных функций в теории обучения машин. – М.: Наука,1970.
- Ту Дж, Гонсалес Р. Принципы распознавания образов. -: Мир.1978.
- Дуда Р., Харт П. Распознавание образов и анализ сцен.- .:Мир.1976.
- Горелик А.Л., Скрипка В.А. Методы распознавания. – М.:Высшая школа.1977.
- Дюран Б., Оделл П. Кластерный анализ.-М.:Статистика. 1977.
- Тимохин В.И. Применение ЭВМ для расширения задач распознавания образов. – Ленинград: изд-во ЛГУ, 1983.
- А.Фор. Восприятие и распознавание образов.- М.: Машиностроение. 1989.
- Мандель П.Д. Кластерный анализ. – М.:Финансы и статистика.1988.
- Распознавание образов и медицинская диагностика./Под ред. Неймарка Ю.И.- М.:Наука, 1972.